Gía trị x-y+z biết: x/2=y/3=z/5 và x+y-z= -90
Gía trị x-y+z biết:
x/2=y/3=z/5 và x+y-z = -90
Gía trị của x biết
x=y/3 =x/5 và x + y - z = 2
Cho x,y.z thỏa mãn x/2=y/3,y/4=z/5 và x+y-z=10.Gía trị x,y,z là
A.x=16;y=24;z=30
B.x=30;y=24;z=16
C.x=2;y=3;z=5
D.x=24;y=16;z=30
Theo bài ra ta cs
\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{12}\left(1\right)\)
\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\left(2\right)\)
Từ (1) ; (2) => \(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
ADTC dãy tỉ số bằng nhau ta cs
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{8}=2\\\frac{y}{12}=2\\\frac{z}{15}=2\end{cases}\Rightarrow\hept{\begin{cases}x=16\\y=24\\z=30\end{cases}}}\)
Như vậy ta chọn : A
\(\dfrac{x}{2}\), \(\dfrac{y}{3}\), \(\dfrac{z}{4}\) x + y - z = 3. Gía trị của x, y và z
Áp dụng tính chất dãy tỉ số bằng nhau
\(\dfrac{x+y-z}{2+3-4}=\dfrac{3}{1}=3\)
⇒ \(x=2.3=6\)
⇒ \(y=3.3=9\)
⇒ \(z=4.3=12\)
x/2=y/3=z/4 =x+y-z/2+3-4=3/1=3
=> x/2=3 <=> x=6
y/3=3 <=> x=9
z/4=3 <=> x=12
Hơi khó nhìn mong bạn thông cảm nha! Mik ko biết gõ Talex =))
tìm x,y,z biết x/2=y/3 , z/5= y/4 và x-z+y=90
cho x,y,z thỏa mãn (x+10)/7=(y+6)/9=(27-z)/11 và 3.x^3+7=199 .Gía trị của tổng x+y+z= ?
Bạn tính x ra sau đó từ tỉ lệ thức ta tính ra đc y và z.
Mình gợi ý nha:
Bạn tính x từ phép tính 3.x3+7=199 (bằng 4)
Rồi bạn tính (x+10)/7 (bằng 2)
Từ đó ta có y+6=18 và 27-z=22
Tính y;z
Tính x+y+z.
Cho các số thực x,y,z thỏa mãn \(x+y+z=1\) và \(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=\)1 Gía trị của biểu thức \(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\)
...
=>\(\left(x+y+z\right)\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right)=1\)
=>\(\frac{x^2}{y+z}+\frac{xy}{y+z}+\frac{xz}{y+z}+\frac{xy}{z+x}+\frac{y^2}{z+x}+\frac{yz}{z+x}+\frac{xz}{x+y}+\frac{yz}{x+y}+\frac{z^2}{x+y}=1\)
=>\(\left(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\right)+\left(\frac{xy}{y+z}+\frac{xz}{y+z}+\frac{xy}{z+x}+\frac{yz}{z+x}+\frac{xz}{x+y}+\frac{yz}{x+y}\right)=1\)
=>\(\left(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\right)+\left(\frac{xy+xz}{y+z}+\frac{xy+yz}{z+x}+\frac{xz+yz}{x+y}\right)=1\)
=>\(\left(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\right)+\left(x+y+z\right)=1\)
=>\(\left(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\right)+1=1\)
=>\(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}=0\)
Nhân hai tổng đó lại được tích bằng 1. Nhóm ba phân thức cần tìm thành một nhóm, các phân thức còn lại nhóm và rút gọn được x + y + z = 1 nên tổng cần tìm bằng 0 bạn à!
tìm x,y,z biết:
x-y/2=y-z/3=z-x/4 và x+y+z=3
x-y/2=y+1/3=x+2/4=z-3
giá trị tuyệt đối x/2=y-2/3=z-3/2 và 2x-y+3=5
tìm 3 số x,y,z biết:
a/ x/2 = y/3 = z/5 và x+y+z = -90
b/ 2x =3y= 5z và x-y+z =-33
a/ x/2 = y/3 = z/5 và x+y+z = -90
áp dụng tính chất của dãy tỉ số bằng nhau, có:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{x+y+z}{2+3+5}=\frac{-90}{10}=-9\)
suy ra: \(\frac{x}{2}=-9\Rightarrow x=-9\cdot2=-18\)
\(\frac{y}{3}=-9\Rightarrow y=-9\cdot3=-27\)
\(\frac{z}{5}=-9\Rightarrow z=-9\cdot5=-45\)
a/ x/2 = y/3 = z/5 và x+y+z = -90
áp dụng tính chất của dãy tỉ số bằng nhau, có:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{x+y+z}{2+3+5}=\frac{-90}{10}=-9\)
suy ra: \(\frac{x}{2}=-9\Rightarrow x=-9\cdot2=-18\)
\(\frac{y}{3}=-9\Rightarrow y=-9\cdot3=-27\)
\(\frac{z}{5}=-9\Rightarrow z=-9\cdot5=-45\)
b/ 2x =3y= 5z và x-y+z =-33
=> 2x = 3y, 3y = 5z
=> x/3 = y/2, y/5 = z/3
=> x/15 = y/10 = z/6 và x - y + z = -33
áp dụng tính chất của dãy tỉ số bằng nhau, có:
\(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x-y+z}{15-10+6}=\frac{-33}{11}=-3\)
suy ra: \(\frac{x}{15}=-3\Rightarrow x=-3\cdot15=-45\)
\(\frac{y}{10}=-3\Rightarrow y=-3\cdot10=-30\)
\(\frac{z}{6}=-3\Rightarrow z=-3\cdot6=-18\)
a, \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)và\(x+y+z=-90\)
ADTC dãy tỉ số bằng nhau:
Ta có: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{x+y+z}{2+3+5}=\frac{-90}{10}=-9\)
\(\Rightarrow\)\(\frac{x}{2}=-9\rightarrow x=-9.2=-18\)
\(\frac{y}{3}=-9\rightarrow y=-9.3=-27\)
\(\frac{z}{5}=-9\rightarrow z=-9.5=-45\)
Vậy \(x,y,z\)lần lượt bằng \(-18,\)\(-27,\)\(-45\)