Cho tam giác ABC có AB=4 cm,AC=6 cm,AD là đướng phân giác của góc A. Tính tỉ số của BD,DC
Cho tam giác ABC có AB = 6cm ac = 10cm bc = 13 cm . ad là đường phân giác của góc a . tính bd , dc
1/tam giác ABC có góc A= 60 độ; AB= 3 cm; AC= 6 cm, AD là phân giác của góc A.
a) Tính tỉ số DC/DB
b) Từ D kẻ đường thẳng vuộng góc với AC cắt AC tại M và cắt dường thẳng AB tại N.
CM: tam giác AMD đồng dạng với tam giác NMA, tính SAMD / SNMA.
***baj nay gjup mjk cau b nka!!!***
2/ Cho tam giác ABC vuông tại A có AB= 6cm; AC= 8cm. Đường cao Ah và phân giác BD cắt nhau tại I( H thuộc BC và D thuộc AC).
a) Tính độ dài AD, DC
b) CM: tam giác ABC đồng dạng với tam giác HBA, suy ra AB2 = BH.BC
c) CM: tam giác ABI đồng dạng với tam giác CBD.
d) CM: IH/IA = AD/ DC.
***baj nay gjup mjk cua d nka!!!***
1b) Tam giác AMN vuông tại M có góc A = 600 => góc N = 300
Tam giác vuông AMD và tam giác vuông NMA có góc A = góc N(cùng = 300) nên chúng đồng dạng
=> SAMD/SNMA = (AM/MN)2 = AM2/MN2 (1)
Gọi I là trung điểm của AN => MI là trung tuyến tg AMN vuông tại M => MI = IA = 1/2AN => tg AMI cân tại I mà góc A = 600
=> tg AMI đều => AM = AI = 1/2AN
Theo Pytago ta có AN2 = AM2 + MN2 => (2AM)2 - AM2 =MN2 => 3AM2 = MN2 => AM2/MN2 = 1/3 (2)
Từ (1) và (2) bn suy ra nhé
1b) Tam giác AMN vuông tại M có góc A = 60o
Tam giác vuông AMD và tam giác vuông NMA có góc A = góc N(cùng = 30o) nên chúng đồng dạng
=> SAMD/SNMA = (AM/MN)2 = AM2 /MN2 (1)
Gọi I là trung điểm của AN => MI là trung tuyến tg AMN vuông tại M => MI = IA = 1/2AN => tg AMI cân tại I mà góc A = 60o
=> tg AMI đều => AM = AI = 1/2AN
Từ (1) và (2) bn suy ra nhé
Cho tam giác ABC có AB =6 cm ,AC = 9cm ,BC = 10 cm ,đường phân giác trong AD , đường phân giác ngoài AE.
a ) Tính DB, DC , EB
b ) Đường phân giác CF của tam giác ABC cắt AD ở I .Tính tỉ số diện tích tam giác DIF và diện tích tam giác ABC
Help mình với
#Toán lớp 8
a, Vì AD là phân giác nên \(\frac{AB}{AC}=\frac{DB}{DC}\Rightarrow\frac{DC}{AC}=\frac{DB}{AB}\)
Theo tc dãy tỉ số bằng nhau
\(\frac{DC}{AC}=\frac{DB}{AB}=\frac{BC}{AB+AC}=\frac{10}{15}=\frac{2}{3}\Rightarrow DC=6cm;DB=4cm\)
Cho tam giác ABC vuông tại A , AB = 6 cm , AC = 8cm , BD là phân giác của góc ABC ( D thuộc AC )
1) Tính đọ dài cạnh BC, DA, DC
2) Vẽ đường cao AH của tâm giác ABC . Tính AH
3) Cm AB2 =BH . BC
4) tính tỉ số diện tích hai tam giác AHB và CAB
1/tam giác ABC có góc A= 60 độ; AB= 3 cm; AC= 6 cm, AD là phân giác của góc A.
a) Tính tỉ số DC/DB
b) Từ D kẻ đường thẳng vuộng góc với AC cắt AC tại M và cắt dường thẳng AB tại N.
CM: tam giác AMD đồng dạng với tam giác NMA, tính SAMD / SNMA.
***baj nay gjup mjk cau b nka!!!***
2/ Cho tam giác ABC vuông tại A có AB= 6cm; AC= 8cm. Đường cao Ah và phân giác BD cắt nhau tại I( H thuộc BC và D thuộc AC).
a) Tính độ dài AD, DC
b) CM: tam giác ABC đồng dạng với tam giác HBA, suy ra AB2 = BH.BC
c) CM: tam giác ABI đồng dạng với tam giác CBD.
d) CM: IH/IA = AD/ DC.
***baj nay gjup mjk cua d nka!!!***
cho tam giác ABC , có AB>AC , AD là phân giác của góc A . CM BD>DC
Cho tam giác ABC có AD là phân giác của góc A qua d kẻ đường thẳng song song với AB cắt AC tại E cho AB = 12cm , AC = 20cm BC = 28 cm . Tính BD , DC, DE
Xét ΔBAC có
AD là đường phân giác ứng với cạnh BC
nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)
hay \(\dfrac{BD}{12}=\dfrac{CD}{20}\)
mà BD+CD=28cm
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{12}=\dfrac{CD}{20}=\dfrac{BD+CD}{12+20}=\dfrac{28}{32}=\dfrac{7}{8}\)
Do đó: BD=10,5cm; CD=17,5cm
Xét ΔBAC có
DE//AB
nên \(\dfrac{DE}{AB}=\dfrac{CD}{BC}\)
\(\Leftrightarrow DE=\dfrac{17.5}{28}\cdot12=7.5\left(cm\right)\)
: Cho tam giác ABC vuông tại A có AB = 12 cm, = 500
a) Tính độ dài BC và AC?
b) Kẻ tia phân giác BD của góc ABC (D AC). Tính AD, DC, BD?
(Kết quả về cạnh làm tròn đến chữ số thập phân thứ hai)
Cho tam giác ABC vuông tại A biết AB = 6 cm BC = 10 cm đường phân giác BD ( D thuộc AC ) kẻ DE vuông góc BC chứng minh tam giác ECD tương đương tam giác ACB Tính AD? Tính tỉ số diện tích của tam giác ECD và tam giác ACB
a, Xét tam giác ECD và tam giác ACB ta có
^CED = ^CAB = 900
^C _ chung
Vậy tam giác ECD ~ tam giác ACB ( g.g )
b, Áp dụng định lí Pytago ta có :
\(AB^2+AC^2=BC^2\Rightarrow AC^2=BC^2-AB^2=100-36=64\Rightarrow AC=8\)cm
Do BD là đường phân giác ^B
\(\Rightarrow\dfrac{AB}{BC}=\dfrac{AD}{DC}\) mà \(DC=AC-AD=8-AD\)
\(\Rightarrow\dfrac{6}{10}=\dfrac{AD}{8-AD}\Rightarrow48-6AD=10AD\Rightarrow16AD=48\Rightarrow AD=3\)cm
Vậy AD = 3 cm
c, Ta có : \(\dfrac{S_{ECD}}{S_{ACB}}=\dfrac{\dfrac{1}{2}ED.EC}{\dfrac{1}{2}AC.AB}=\dfrac{ED.EC}{6.8}=\dfrac{ED.EC}{48}\)(*)
\(\dfrac{EC}{AC}=\dfrac{ED}{AB}=\dfrac{CD}{BC}\)( tỉ số đồng dạng ý a )
\(\Rightarrow\dfrac{EC}{8}=\dfrac{5}{10}\)( CD = AC - AD = 8 - 3 = 5 cm )
\(\Rightarrow EC=\dfrac{40}{10}=4\) cm (1)
\(\Rightarrow\dfrac{ED}{AB}=\dfrac{CD}{BC}\Rightarrow ED=\dfrac{AB.CD}{BC}=\dfrac{6.5}{10}=3\)cm (2)
Thay (1) ; (2) vào (*) ta được :
\(\dfrac{S_{ECD}}{S_{ACB}}=\dfrac{3.4}{48}=\dfrac{12}{48}=\dfrac{1}{4}\)