Tìm n thuộc N để P=(n^2-3)^2+16 là số nguyên tố
1.Tìm n thuộc n để (n+3)(n+1) là số nguyên tố
2.Tìm p để p+2 và p+94 là số nguyên tố
ta có (n+3)(n+1) là số nguyên tố \(\Leftrightarrow\orbr{\begin{cases}n+3=1\\n+1=1\end{cases}\Leftrightarrow\orbr{\begin{cases}n=1-3\\n=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}n=-2\\n=0\end{cases}}}\)
Mà \(n\in N\)
\(\Rightarrow\)n=0
a, Tìm n để : (n - 2).(n^3 + 2) là số nguyên tố.
b, Tìm n thuộc N để : n^2 + 8 / n + 3 là số nguyên tố.
Bạn nào làm đúng tớ tick !
tìm n thuộc N để n3+n2-n+2 là số nguyên tố
Đặt \(A=n^3+n^2-n+2\)
\(A=n^3+2n^2-n^2-2n+n+2\)
\(A=n^2\left(n+2\right)-n\left(n+2\right)+\left(n+2\right)\)
\(A=\left(n+2\right)\left(n^2-n+1\right)\)
Vì A là số nguyên tố nên A có hai ước là 1 và chính nó
=> Ta có hai trường hợp:
TH1: \(n+2=1\) và \(n^2-n+1\) là số nguyên tố
\(\Rightarrow n=-1\) và \(n^2-n+1=3\) ( Không thỏa mãn )
TH2: \(n^2-n+1=1\) và \(n+2\) là số nguyên tố
\(\Rightarrow\left[{}\begin{matrix}n=0\\n=1\end{matrix}\right.\) và \(\left[{}\begin{matrix}n+2=2\\n+2=3\end{matrix}\right.\) ( Thỏa mãn )
Vậy n = 0 hoặc n = 1
tìm n thuộc N để:
a) m^2 +12n là số nguyên tố
b) 3^n+6 là số nguyên tố
^ là mũ
tìm n thuộc N để: (n-1).(n2+2n+3) là số nguyên tố
tìm n thuộc N để n3+n2-n+2 là số nguyên tố
Tìm n thuộc P để :
a, n + 2 ; n + 10 là số nguyên tố
b, n + 2 ; n + 6 ; n + 8 ; n + 14 là số nguyên tố
1. Tìm số nguyên dương n để P nguyên tố
P= n( n +1 )/2
2. Tìm số nguyên tố P để 2P+1 là lập phương của một số tự nhiên
3. Tìm n thuộc số tự nhiên khác 0 đển n^4 + 4 là số nguyên tố
Em tham khảo!
Câu 3: Câu hỏi của trần như - Toán lớp 8 - Học toán với OnlineMath
Câu 2: Câu hỏi của Hoàng Bình Minh - Toán lớp 8 - Học toán với OnlineMath
tìm n thuộc N để n^4-6n^3+12n^2-12n+20 là số nguyên tố