\(\left(x-\frac{1}{x}\right)^2-5\left(x-\frac{1}{x}\right)+6=0\)0
\(x+5-5\sqrt{x-1}=0\)
Điều kiện: $ - \frac{1}{3} \le x \le 6$
Ta nhẩm thấy x = 5 là nghiệm của PT, thêm bớt và trục căn thức ta có:
Phương trình $ \Leftrightarrow \left( {\sqrt {3x + 1} - 4} \right) - \left( {\sqrt {6 - x} - 1} \right) + \left( {3{x^2} - 14x - 5} \right) = 0$
$ \Leftrightarrow \frac{{3\left( {x - 5} \right)}}{{\sqrt {3x + 1} + 4}} + \frac{{x - 5}}{{\sqrt {6 - x} + 1}} + \left( {3x + 1} \right)\left( {x - 5} \right) = 0$
$ \Leftrightarrow \left( {x - 5} \right)\left[ {\frac{3}{{\sqrt {3x + 1} + 4}} + \frac{1}{{\sqrt {6 - x} + 1}} + \left( {3x + 1} \right)} \right] = 0 \Leftrightarrow \left( {x - 5} \right)g\left( x \right) = 0$
Với điều kiện trên ta thấy g(x) > 0 vậy x = 5 là nghiệm của PT.
\(\left(\frac{1}{7}x-\frac{2}{7}\right).\left(-\frac{1}{5}x+\frac{3}{5}\right).\left(\frac{1}{3}x+\frac{4}{3}\right)=0\)0
b) \(\frac{1}{6}x+\frac{1}{10}x-\frac{4}{5}x+1=0\)
a) \(\left(\frac{1}{7}x-\frac{2}{7}\right)\cdot\left(-\frac{1}{5}x+\frac{3}{5}\right)\cdot\left(\frac{1}{3}x+\frac{4}{3}\right)=0\)
\(\Rightarrow\)TH1 : \(\frac{1}{7}x-\frac{2}{7}=0\) TH2 : \(-\frac{1}{5}x+\frac{3}{5}=0\) TH3 : \(\frac{1}{3}x+\frac{4}{3}=0\)
\(\frac{1}{7}x=\frac{2}{7}\) \(-\frac{1}{5}x=\frac{3}{5}\) \(\frac{1}{3}x=\frac{4}{3}\)
\(x=\frac{2}{7}\cdot7\) \(x=\frac{3}{5}\cdot-5\) \(x=\frac{4}{3}\cdot3\)
\(x=2\) \(x=-3\) \(x=4\)
Vậy x = 2 hoặc x = -3 hoặc x = 4
b) \(\frac{1}{6}x+\frac{1}{10}x-\frac{4}{5}x+1=0\)
\(x\cdot\left(\frac{1}{6}+\frac{1}{10}-\frac{4}{5}\right)=1\)
\(x\cdot\frac{5+3-24}{30}=1\)
\(x\cdot\frac{-8}{15}=1\)
\(x=1\cdot\frac{-15}{8}=\frac{-15}{8}\)
Vậy x = \(\frac{-15}{8}\)
cos2x-√3 sin2x=sin3x+1
3sin2x+4cos2x+5cos2003x=0
√3sin(x-\(\frac{\pi}{3}\))\(+sin\left(x+\frac{\pi}{6}\right)-2sin1972x=0\)
\(\sqrt{2}cos\left(\frac{x}{5}-\frac{\pi}{12}\right)-\sqrt{6}sin\left(\frac{x}{5}-\frac{\pi}{12}\right)=2sin\left(\frac{x}{5}+\frac{2\pi}{3}\right)-2sin\left(\frac{3x}{5}+\frac{\pi}{6}\right)\)
a/ Bạn coi lại đề bài, pt này có 1 nghiệm rất xấu ko giải được:
\(\Leftrightarrow1-sin^2x-2\sqrt{3}sinx.cosx=sin^3x+1\)
\(\Leftrightarrow sin^3x+sin^2x+2\sqrt{3}sinx.cosx=0\)
\(\Leftrightarrow sinx\left(sin^2x+sinx+2\sqrt{3}cosx\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\Rightarrow x=k\pi\\sin^2x+sinx+2\sqrt{3}cosx=0\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow sin^2x+sinx=-2\sqrt{3}cosx\) (\(cosx\le0\))
\(\Leftrightarrow sin^2x\left(sinx+1\right)^2=12cos^2x\)
\(\Leftrightarrow sin^2x\left(sinx+1\right)^2=12\left(1-sinx\right)\left(1+sinx\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}1+sinx=0\left(2\right)\\sin^2x\left(sinx+1\right)=12\left(1-sinx\right)\left(3\right)\end{matrix}\right.\)
\(\left(2\right)\Leftrightarrow x=-\frac{\pi}{2}+k2\pi\) (thỏa mãn)
\(\left(3\right)\Leftrightarrow sin^3x+sin^2x+12sinx-12=0\)
Pt bậc 3 này có nghiệm thực thuộc \(\left(-1;1\right)\) nhưng rất xấu
b/
\(\Leftrightarrow\frac{3}{5}sin2x+\frac{4}{5}cos2x=-cos2003x\)
Đặt \(\frac{3}{5}=cosa\) với \(a\in\left(0;\pi\right)\)
\(\Rightarrow sin2x.cosa+cos2x.sina=-cos2003x\)
\(\Leftrightarrow sin\left(2x+a\right)=sin\left(2003x-\frac{\pi}{2}\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}2003x-\frac{\pi}{2}=2x+a+k2\pi\\2003x-\frac{\pi}{2}=\pi-2x-a+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4002}+\frac{a}{2001}+\frac{k2\pi}{2001}\\x=\frac{3\pi}{4010}-\frac{a}{2005}+\frac{k2\pi}{2005}\end{matrix}\right.\)
c/
\(\Leftrightarrow\sqrt{3}sin\left(x-\frac{\pi}{3}\right)+cos\left(\frac{\pi}{3}-x\right)=2sin1972x\)
\(\Leftrightarrow\frac{\sqrt{3}}{2}sin\left(x-\frac{\pi}{3}\right)+\frac{1}{2}cos\left(x-\frac{\pi}{3}\right)=sin1972x\)
\(\Leftrightarrow sin\left(x-\frac{\pi}{3}+\frac{\pi}{6}\right)=sin1972x\)
\(\Leftrightarrow sin\left(x-\frac{\pi}{6}\right)=sin1972x\)
\(\Leftrightarrow\left[{}\begin{matrix}1972x=x-\frac{\pi}{6}+k2\pi\\1972x=\frac{7\pi}{6}-x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{11826}+\frac{k2\pi}{1971}\\x=\frac{7\pi}{11838}+\frac{k2\pi}{1973}\end{matrix}\right.\)
giải phương trình
a) \(\left(x+\frac{5-x}{\sqrt{x}+1}\right)^2+\frac{16\sqrt{x}\left(5-x\right)}{\sqrt{x}+1}-16\)\(=0\)
b) \(\sqrt{2x-\frac{3}{x}}+\sqrt{\frac{6}{x}-2x}=1+\frac{3}{2x}\)
c) \(\sqrt{2x+1}+\frac{2x-1}{x+3}-\left(2x-1\right)\sqrt{x^2+4}-\sqrt{2}=0\)
d) \(\sqrt{x+2+3\sqrt{2x-5}}+\sqrt{x-2-\sqrt{2x-5}}=2\sqrt{2}\)
Bài 1: Rút gọn
a. \(\left(5-2\sqrt{3}\right)^2+\left(5+2\sqrt{3}\right)^2\)
b. \(\left(\sqrt{5}+\sqrt{2}\right)^2-\left(2\sqrt{5}+1\right)\left(2\sqrt{5}-1\right)-\sqrt{40}\)
c. \(\left(\sqrt{2}-1\right)^2-\frac{2}{3}\sqrt{4}+\frac{4\sqrt{2}}{5}+\sqrt{1\frac{11}{15}}-\sqrt{2}\)
d. \(\left(\sqrt{6}-\sqrt{18}+5\sqrt{2}-\frac{1}{2}\sqrt{8}\right)2\sqrt{6}+2\sqrt{3}\)
e. \(\left(2\sqrt{3}-3\sqrt{2}\right)^2+6\sqrt{6}+3\sqrt{24}\)
Bài 2: Rút gọn
A =\(\left(\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x}-1}:\frac{\sqrt{x+1}}{x-2\sqrt{x}+1}\right)\)(x>0 ; x khác 1)
Giải phương trình:
1.\(\frac{x-5}{x-5}+\frac{x-6}{x-5}+\frac{x-7}{x-5}+...+\frac{1}{x-5}=4\left(x\in N\right)\)
2.\(\frac{1}{x^2+3x+2}+\frac{1}{x^2+5x+6}+\frac{1}{x^2+7x+12}+...+\frac{1}{x^2+15x+56}=\frac{1}{14}\)
3.\(\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)\left(1+\frac{1}{3.5}\right)...\left(1+\frac{1}{x\left(x+2\right)}\right)=\frac{31}{16}\left(x\in N\right)\)
4.\(8\left(x^2+\frac{1}{x^2}\right)-34\left(x+\frac{1}{x}\right)+51=0\)
5.\(6x^4-5x^3-38x^2-5x+6=0\)
rút gọn biểu thức
a) A= \(2\sqrt{\frac{1}{2}}+\sqrt{18}\)
b) B= \(\frac{5+3\sqrt{5}}{\sqrt{5}}+\frac{3+\sqrt{3}}{\sqrt{3}+1}-\left(\sqrt{5+3}\right)\)
c) C= \(\frac{1}{x+\sqrt{x}}+\frac{2\sqrt{x}}{x-1}-\frac{1}{x-\sqrt{x}}\left(x>0,x\ne1\right)\)
d) D = \(\left(\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\frac{\sqrt{x-2}}{x-1}\right)\left(x+\sqrt{x}\right)\left(x>0,x\ne1\right)\)
e) E = \(\frac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
Giải giúp mik vs đap cần gấp . Cảm ơn mn. Giải cho mik bài 1 cx đc
1/ Rút gọn
A=\(\sqrt{7}-4\sqrt{3}+\sqrt{4}-2\sqrt{3}\)
B=\(\left(2+\frac{5-\sqrt{5}}{\sqrt{5}-1}\right)\) \(\left(2-\frac{5+\sqrt{5}}{\sqrt{5}+1}\right)\)
C=\(\left(\sqrt{3}+1\right)\) \(\left(\frac{\sqrt{14}-6\sqrt{3}}{5+\sqrt{3}}\right)\)
2/Cho P=\(\left(\sqrt{x-\frac{1}{\sqrt{x}}}\right)\):\(\left(\frac{\sqrt{x}-1}{\sqrt{x}}+\frac{1-\sqrt{x}}{x+\sqrt{x}}\right)\)
a/ cmr: P>0, V x >0, x\(\ne\)1
b/Tính GT P khi x\(\frac{2}{2+\sqrt{3}}\)
\(\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}=\frac{3}{2}\Rightarrow2\left(x+y\right)=3xy\)
\(x^2+y^2=5\Leftrightarrow\left(x+y\right)^2-2xy=5\)
Đặt x+y=u; xy=v, ta có hệ
\(\int^{2\left(x+y\right)-3xy=0}_{\left(x+y\right)^2-2xy=5}\Leftrightarrow\int^{2u-3v=0}_{u^2-2v=5}\Leftrightarrow u=3;v=2\)hoặc \(u=-\frac{5}{3};v=-\frac{10}{9}\)
đến đây dùng viet, x và y là nghiệm của 2 phương trình \(X^2-3X+2=0\) hoặc \(X^2+\frac{5}{3}X-\frac{10}{9}=0\). Giải ra được nghiệm (x;y) là \(\left(1;2\right),\left(2;1\right),\left(\frac{-5+\sqrt{65}}{6};\frac{-5-\sqrt{65}}{6}\right),\left(\frac{-5-\sqrt{65}}{6};\frac{-5+\sqrt{65}}{6}\right)\)