Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
NgP_Thao
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 12 2023 lúc 21:47

a: Xét tứ giác ABOC có

\(\widehat{OBA}+\widehat{OCA}=90^0+90^0=180^0\)

=>ABOC là tứ giác nội tiếp

=>A,B,O,C cùng thuộc một đường tròn

b: Xét (O) có

AB,AC là các tiếp tuyến

Do đó: AB=AC

=>A nằm trên đường trung trực của BC(1)

Ta có: OB=OC

=>O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra OA là đường trung trực của BC

=>OA\(\perp\)BC tại H

Xét ΔOBA vuông tại B có BH là đường cao

nên \(OH\cdot OA=OB^2\)

mà OB=OD(=R)

nên \(OH\cdot OA=OD^2\)

=>\(\dfrac{OH}{OD}=\dfrac{OD}{OA}\)

Xét ΔOHD và ΔODA có

\(\dfrac{OH}{OD}=\dfrac{OD}{OA}\)

\(\widehat{HOD}\) chung

Do đó: ΔOHD đồng dạng với ΔODA

Phát Thuận
Xem chi tiết
Nguyễn Quang Minh
25 tháng 4 2022 lúc 14:00

Kim Khánh Linh
Xem chi tiết
Nguyễn Ngọc Anh Minh
8 tháng 5 2021 lúc 8:02

 Ta có

DB=DM; EC=EM; AB=AC (2 tiếp tuyến cùng xp từ 1 điểm ngoài đường tròn thì khoảng cách từ điểm đó đến các tiếp điểm = nhau)

\(C_{ADE}=AD+DM+AE+EM=AD+DB+AE+EC=\)

\(=AB+AC=2AB\)

Khách vãng lai đã xóa
Phương Vy
20 tháng 8 2021 lúc 16:53

Theo tính chất hai tiếp tuyến cắt nhau ta có: DM=DB, EM=EC.

Chu vi tam giác ADE bằng :

AD+DE+AE=AD+DM+ME+EA

=AD+DB+EC+AE

=AB+AC=2 . AB .

Khách vãng lai đã xóa
Giang
21 tháng 8 2021 lúc 20:04

Theo tính chất hai tiếp tuyến cắt nhau ta có: DM=DB, EM=EC.

Chu vi tam giác ADE bằng :

AD+DE+AE=AD+DM+ME+EA

=AD+DB+EC+AE

=AB+AC=2 . AB .

Khách vãng lai đã xóa
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 12 2023 lúc 13:37

a: Xét tứ giác ABOC có

\(\widehat{OBA}+\widehat{OCA}=90^0+90^0=180^0\)

=>ABOC là tứ giác nội tiếp

=>A,B,C,O cùng thuộc một đường tròn

b: Xét (O) có

AB,AC là tiếp tuyến

Do đó: AB=AC

=>A nằm trên đường trung trực của BC(1)

Ta có: OB=OC

=>O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra OA là đường trung trực của BC

=>OA\(\perp\)BC tại H và H là trung điểm của BC

Xét ΔOBA vuông tại B có BH là đường cao

nên \(OH\cdot OA=OB^2\)

mà OB=OD

nên \(OD^2=OH\cdot OA\)

=>\(\dfrac{OD}{OH}=\dfrac{OA}{OD}\)

Xét ΔODA và ΔOHD có

\(\dfrac{OD}{OH}=\dfrac{OA}{OD}\)

\(\widehat{DOA}\) chung

Do đó: ΔODA đồng dạng với ΔOHD

Người Bí Ẩn
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 12 2023 lúc 13:34

a: Xét tứ giác ABOC có \(\widehat{OBA}+\widehat{OCA}=90^0+90^0=180^0\)

nên ABOC là tứ giác nội tiếp

=>A,B,O,C cùng thuộc một đường tròn

b: Xét (O) có

AB,AC là các tiếp tuyến

Do đó: AB=AC

=>A nằm trên đường trung trực của BC(1)

Ta có: OB=OC

=>O nằm trên đường trung trực của BC(2)

từ (1) và (2) suy ra OA là đường trung trực của BC

=>OA\(\perp\)BC tại H

Xét ΔOBA vuông tại B có BH là đường cao

nên \(OH\cdot OA=OB^2\)

mà OB=OD(=R)

nên \(OH\cdot OA=OD^2\)

=>\(\dfrac{OH}{OD}=\dfrac{OD}{OA}\)

Xét ΔOHD và ΔODA có

\(\dfrac{OH}{OD}=\dfrac{OD}{OA}\)

\(\widehat{HOD}\) chung

Do đó: ΔOHD đồng dạng với ΔODA

Lam Vu
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 7 2023 lúc 14:17

loading...

Lam Vu
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 7 2023 lúc 13:48

a: góc AMO+góc ANO=180 độ

=>AMON nội tiếp

b: Xét ΔAKM và ΔAMI có

góc AMK=góc AIM

góc MAK chung

=>ΔAKM đồng dạng với ΔAMI

=>AK/AM=AM/AI

=>AM^2=AI*AK

Xét ΔABM và ΔAMC có

góc AMB=góc ACM

góc BAM chung

=>ΔABM đồng dạng với ΔAMC

=>AB/AM=AM/AC

=>AM^2=AB*AC=AK*AI

Thùy Trâm
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 8 2023 lúc 10:13

1: góc ADB=55 độ

góc ADB=góc TAB(=1/2sđ cung AB)

=>góc TAB=55 độ

góc AOB=2*55=110 độ

2:

góc TAO+góc TBO=180 độ

=>TAOB nội tiếp

3: Xét ΔTAC và ΔTDA có

góc TAC=góc TDA

góc ATC chung

=>ΔTAC đồng dạng với ΔTDA

=>TA/TD=TC/TA

=>TA^2=TD*TC

Xét (O) có

TA,TB là tiếp tuyến

=>TA=TB

mà OA=OB

nên OT là trung trực của AB

=>OT vuông góc AB tại F

ΔOAT vuông tại A có AF là đường cao

nên TF*TO=TA^2

=>TF*TO=TC*TD

Nguyễn Minh Đức
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 6 2023 lúc 9:10

loading...