So sánh A = \(\frac{20^{102}+1}{20^{101}+1}\) và B = \(\frac{20^{101}+1}{20^{100}+1}\)
Cho A= \(\frac{20^{102}+1}{20^{101}+1}\); B= \(\frac{20^{101}+1}{20^{100}+1}\). So sánh A và B
so sánh các phân số sau:
\(\frac{20^{100}-1}{20^{101}-1}\) và \(\frac{20^{101}-1}{20^{102}-1}\)
\(20A=\dfrac{20^{101}-1-19}{20^{101}-1}=1-\dfrac{19}{20^{101}-1}\)
\(20B=\dfrac{20^{102}-1-19}{20^{102}-1}=1-\dfrac{19}{20^{102}-1}\)
mà \(\dfrac{-19}{20^{101}-1}< \dfrac{-19}{20^{102}-1}\)
nên A<B
So sánh 2 phân số sau:
\(\frac{20^{100}-1}{20^{101}-1}\) và \(\frac{20^{101}-1}{20^{102}-1}\)
\(\frac{20^{101}-1}{20^{102}-1}>\frac{20^{101}-20}{20^{102}-20}=\frac{20.\left(20^{100}-1\right)}{20.\left(20^{101}-1\right)}=\frac{20^{100}-1}{20^{101}-1}\)
\(\Rightarrow\frac{20^{101}-1}{20^{102}-1}>\frac{20^{100}-1}{20^{101}-1}\)
So sánh A=\(\dfrac{1}{100}+\dfrac{1}{101}+\dfrac{1}{102}+..+\dfrac{1}{2021}\)và B=20. So sánh A và B
So sánh
A=20101-1/20101+1 và B=20101+1/20101+2
mình biết đáp số nhưng mình ko biết cách giải, bạn nào giúp mình với!
So sánh: \(A=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{100}+\sqrt{101}}\) với \(B=\frac{181}{20}\)
Ta có : \(\frac{1}{\sqrt{k}+\sqrt{k+1}}=2\left(\sqrt{k+1}-\sqrt{k}\right)\)
Áp dụng : A = 2\(\left(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{101}-\sqrt{100}\right)\)= \(2\left(\sqrt{101}-1\right)\) \(\ge\) \(2\left(\sqrt{100}-1\right)=2\left(10-1\right)=2\times9=18\)
B = \(\frac{181}{20}=9,05\) < 18 nên suy ra : A>B
cho A=\(\frac{10^{101-1}}{10^{102-1}}\)và B=\(\frac{10^{100+1}}{10^{101+1}}\)
so sánh A và B
$\frac{10^{101-1}}{10^{102-1}}$ và $\frac{10^{100+1}}{10^{101+1}}$
= $\frac{10^{100}}{10^{101}}$ và $\frac{10^{101}}{10^{102}}$
Mà $\frac{10^{100}}{10^{101}}$ < $\frac{10^{101}}{10^{102}}$
=> $\frac{10^{101-1}}{10^{102-1}}$ < $\frac{10^{100+1}}{10^{101+1}}$
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
a,tìm số nguyên x và y biết:xy-x+2y=3
b,.So sánh M và N biết rằng:
\(M=\frac{101^{102}+1}{101^{103}+1};N=\frac{101^{103}+1}{101^{104}+1}\)
xy - x + 2y = 3
=> x(y-1) + 2y - 2 = 3 + 2
=> x(y-1) + 2(y-1) = 5
=> (x+2)(y+1) = 5
=> x + 2 và y + 1 \(\in\)Ư(5) = {-1;5;-5;1}
ta có bảng :
x+2 | -1 | -5 | 1 | 5 |
y+1 | -5 | -1 | 5 | 1 |
x | -3 | -7 | -1 | 3 |
y | -6 | -2 | 4 | 0 |
Bài 1
a rút gọn B=\(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{20}\right)\)
b Chứng minh A=\(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}>\frac{5}{8}\)
B= \(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\)\(\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{20}\right)\)
B= \(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{19}{20}\)= \(\frac{1}{20}\)
vậy B= \(\frac{1}{20}\)
b,A=(1/101+1/102+...+1/150)+(1/151+1/152+...1/200)>25/125+25/150+25/175+25/200=(1/5+1/6+1/7)+1/8=107/201+1/8>1/2+2/8=5/8
Vậy A>5/8
Nhớ k mik nha!!!!!!!!!!!!!
a/ Quy đồng mẫu số trong các ngoặc đơn, chúng sẽ giản ước được :\(B=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{20}\right)=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{18}{19}.\frac{19}{20}=\frac{1}{20}.\)
b/ Chứng minh A> 5/8
\(A=(\frac{1}{101}+...\frac{1}{125})+(\frac{1}{126}+...+\frac{1}{150})+(\frac{1}{151}+...+\frac{1}{175})+\left(\frac{1}{176}+...+\frac{1}{200}\right)\ge.\)
\(\ge\frac{25}{125}+\frac{25}{150}+\frac{25}{175}+\frac{25}{200}=\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}=\left(\frac{1}{5}+\frac{1}{7}\right)+\left(\frac{1}{6}+\frac{1}{8}\right)=\frac{12}{35}+\frac{7}{24}>\frac{24}{72}+\frac{21}{72}=\frac{45}{72}=\frac{5}{8}\)