Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
super xity
Xem chi tiết
Thanh Thong
Xem chi tiết
giang ho dai ca
28 tháng 5 2015 lúc 8:44

\(f\left(1\right)=a.1^2+b.1+c=a+b+c=0\) 

 

Đỗ Thị Lý
Xem chi tiết
zZz Phan Cả Phát zZz
Xem chi tiết
Hoàng Phúc
24 tháng 4 2016 lúc 20:03

Để x=1 là một nghiệm của f(x)

thì f(1)=a.12+b.1+c=0

=>a+b+c=0

 Vậy .........

super xity
Xem chi tiết
Iruko
14 tháng 8 2015 lúc 15:41

a,a+b+c=0 <=>c=-a-b

Khi đ f(x)=ax^2+bx-a-b

f(x)=a(x^2-1)+b(x-1)=(x-1)(ax+a+b)

=>f(x) có nghiệm x=1

b,a-b+c=0 <=>c=b-a

Khi đó f(x)=ax^2+bx+b-a

f(x)=a(x^2-1)+b(x+1)=(x+1)(ax-a+b)

=>f(x) có nghiệm x=-1

 

Vic Lu
11 tháng 4 2017 lúc 19:37

a. Ta có: \(f\left(1\right)=a.1^2+b.1+c\)

\(f\left(1\right)=a+b+c\)

Mà theo đề bài có a+b+c=0

=>\(f\left(1\right)=0\)

x=1 là một nghiệm của đa thức f(x)

Phần b bạn làm tương tự nhé

Đoàn Khánh Linh
Xem chi tiết
Đặng Quỳnh Ngân
26 tháng 4 2016 lúc 16:24

mot da thuc bac 2 có cao nhat la 2 nghiem bạn xem lại de bai

Phước Lộc
Xem chi tiết
Phùng Minh Quân
21 tháng 4 2018 lúc 11:56

Thay \(x=1\) và đa thức \(f\left(x\right)=ax^2+bx+c\) ta được : 

\(f\left(x\right)=a.1^2+b.1+c\)

\(f\left(x\right)=a+b+c\)

Mà giả thuyết cho \(a+b+c=0\) nên \(f\left(x\right)=a+b+c=0\)

Vậy \(x=1\) là một nghiệm của đa thức \(f\left(x\right)=ax^2+bx+c\)

Chúc bạn học tốt ~ 

Phước Lộc
21 tháng 4 2018 lúc 11:57

Cảm ơn nhé!

Luyen Hoang Khanh Linh
Xem chi tiết
Sakamoto Sara
Xem chi tiết
Trần Thu Phương
14 tháng 5 2016 lúc 13:01

Ta có : f(1)= a*13+b*13+c*x+d = a+b+c+d=0

Vay neu a+b+c+d =0 thi da thuc co mot nghiem la 1 

Nguyễn Duy Long
14 tháng 5 2016 lúc 15:31

F(1)=a.13+b.12+c.1+d=a+b+c+d=0   (theo giả thiết)

=> 1 là nghiệm của F(x)