Cho tam giác ABC vuông tại A có đường cao AD AH là tia phân giác góc BAH .(D thuộc BC).E là trung điểm của AD. C/m:
a, \(AB^{2}\)+\(HC^{2}\)=\(AC^{2}\)+\(HB^{2}\)
b, CE<\(\frac{CA+CB}{2}\)
cho tam giác abc vuông góc tại a đường cao ah vẽ ad là tia phân giác của bah. gọi E là trung điểm của ad a, cm ab^2+ch^2=ac^2+ch^2 b,tam giác acd cân c,gọi I là giao điểm của ce và ah CM DI // AB
Cho tam giác ABC vuông tại A có AC> AB. Đường cao AH. Trên tia HC lấy D sao cho HD=HB. Kẻ CE vuông góc AD. C/M
a) tam giác AHB = tam giác AHD ; góc BAH = góc ACB
b) CB là phân giác của góc ACE
c) Gọi giao điểm của AH và CE là K. C/M: KD song song AB; AC > CD
cho tam giắc abc vuông góc tại a đường cao ah vẽ ad là tia phân giác của bah. gọi E là trung điểm của ad a, cm ab^2+ch^2=ac^2+ch^2 b,tam giác acd cân c,gọi I là giao điểm của ce và ah CM DI // AB
cho tam giắc abc vuông góc tại a đường cao ah vẽ ad là tia phân giác của bah. gọi E là trung điểm của ad a, cm ab^2+ch^2=ac^2+ch^2 b,tam giác acd cân c,gọi I là giao điểm của ce và ah CM DI // AB
Cho tam giác ABC vuông tại A với AB = 6 cm, BC = 10 cm. Kẻ đường cao AH,(H thuộc BC), trên đoạn HC lấy điểm D sao cho HD = HB. Từ C kẻ CE vuông góc với đưòng thẳng AD ( E thuộc đường thẳng AD), đường thẳng CE cắt AH tại M. Chứng minh CB là tia phân giác của góc ACM.
Cho tam giác ABC vuông tại A có AC>AB. đường cao Ah. trên tia Hc lấy D sao cho HD=HB. kẻ CH vuông góc AD. CM
1. tam giác AHB = tam giác AHD; góc BAH = góc ACB
2. CB là phân giác của góc ACE
3. gọi giao điểm của AH và CE là K. CM: KD song song AB; AC > CD
cho tam giác abc vuông tại a . đường cao ah . vẽ ad là tia phân giác của bah. gọi E là trung điểm của ad a, chứng minh: ab^2+ch^2=ac^2+ch^2 b, tam giác acd cân c, gọi I là giao điểm của ce và ah. Chứng minh: DI // AB
cho tam giác ABC vuông tại A(AC>AB) kẻ AH vuông góc với BC. trên tia HC lấy điểm D sao cho HD=HB, kẻ CE vuông góc với AD kéo dài tại E.
a, tam giác ahb=tam giác ahd
b, góc BAH= góc ECD
c, CB là tia phân giác của góc ACE
d, lấy k trên tia AH sao cho AH= KH. chúng minh KD vuông góc với AC
a)Xét ∆ vuông ABH và ∆ADH có :
AH chung
BH = HD
=> ∆ABH =∆ADH (2 cạnh góc vuông)
b) Xét ∆ABD ta có :
AH \(\perp\)BC
BH = HD
=> AH là trung trực
=> ∆ABD cân tại A
=> AB = AD
ABD = ADB
AH là phân giác BAD
=> BAH = DAH
Mà ADB = EDC ( đối đỉnh)
Xét ∆ ABH có :
ABH + BHA + BAH = 180°
=> BAH = 90° - ABH (1)
Xét ∆ DEC có :
DEC + ECD + CDE = 180°
=> EDC = 90° - EDC (2)
Mà EDC = BDA (cmt)
=> EDC = BDA = ABD (3)
Từ (1) (2) (3) => BAH = ECD (dpcm)
c) Xét ∆ABC có
BAC + ACB + ABC = 180°
=> ACB = 90° - ABC
Mà ECD = ABC (cmt)
=> ECD = BCA
Hay CB là phân giác ECA
Cho tam giác ABC vuông tại A (AB>AC), kẻ đường cao AH. Vẽ tia phân giác của góc BAH (D thuộc BH). Gọi M là trung điểm AB, E là giao điểm của hai đường thẳng MD và AH.Chứng minh CE song song AD
cho tam giác ABC và 3 điểm A',B',C' lần lượt nằm trên 3 cạnh BC,AC,AB ( A',B',C' không trùng với các đỉnh của tam giác )
Khi đó ta có : AA',BB',CC' đồng quy \(\Leftrightarrow\frac{A'B}{A'C}.\frac{B'C}{B'A}.\frac{C'A}{C'B}=1\)
Gọi P là giao điểm của AD và BE
Áp dụng định lí Ceva vào \(\Delta ABE\),ta có :
\(\frac{BP}{PE}.\frac{HE}{AH}.\frac{AM}{BM}=1\Rightarrow\frac{AH}{HE}=\frac{BP}{PE}\Rightarrow PH//AB\)
\(\Rightarrow\widehat{BAD}=\widehat{DPH}\)
Mà \(\widehat{BAD}=\widehat{DAH}\)
\(\Rightarrow\widehat{DAH}=\widehat{PDH}\Rightarrow\Delta AHP\)cân tại H
\(\Rightarrow HP=AH\)
Cần chứng minh \(DP//CE\Leftrightarrow\frac{BD}{BC}=\frac{BP}{BE}\Leftrightarrow\frac{BD}{BC}=1-\frac{EP}{BE}\)
Ta có : \(\frac{EP}{BE}=\frac{HP}{AB}=\frac{AH}{AB}=\frac{HD}{BD}\)
Khi đó : \(\frac{BD}{BC}=1-\frac{HD}{BD}\Leftrightarrow\frac{BD}{BC}+\frac{HD}{BD}=1\Leftrightarrow BD^2+HD.BC=BC.BD=\left(BD+DC\right).BD\)
\(\Rightarrow HD.BC=CD.BD\Rightarrow\frac{HD}{BD}=\frac{CD}{BC}\Leftrightarrow\frac{AH}{AB}=\frac{CD}{BC}\)
Ta có : \(\widehat{CDA}=\widehat{DBA}+\widehat{BAD}=\widehat{CAH}+\widehat{DAH}=\widehat{CAD}\)
\(\Rightarrow\Delta CAD\)cân tại C \(\Rightarrow CD=CA\)
Từ đó suy ra : \(\frac{AH}{AB}=\frac{AC}{BC}\) ( đúng vì \(\Delta AHB~\Delta CAB\left(g.g\right)\))
Vậy ta có đpcm
Cho tam giác AbC có góc A = 90°, AC>AB, đường cao AH. a) Biết AB=3cm,AC=4cm. Tính BC, AH b) Lấy điểm D thuộc HC sao cho HD=HB. Chứng minh tam giác ABD cân. c) Kẻ CE vuông góc với AD tại E. Chứng minh góc BAd = góc ACE d) Gọi giao điểm của AH và CE là I. Chứng minh ID_|_AC e) Chứng minh CB là phân giác của góc ACI f) Tính góc BIC
a, Xét Δ ABC, có :
\(AB^2+AC^2=BC^2\) (định lí Py - ta - go)
=> \(3^2+4^2=BC^2\)
=> \(25=BC^2\)
=> BC = 5 (cm)
Xét Δ ABC vuông tại A, theo hệ thức lượng có :
\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)
=> \(\dfrac{1}{AH^2}=\dfrac{1}{3^2}+\dfrac{1}{4^2}\)
=> AH = 2,4 cm
b, Xét Δ ABD, có :
HD = HB (gt)
AH là đường cao
=> Δ ABD cân