Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
czsf
Xem chi tiết
Học Ngu
Xem chi tiết
czsf
Xem chi tiết
czsf
Xem chi tiết
doan thi thuy linh
Xem chi tiết
MinhNoo
Xem chi tiết
czsf
Xem chi tiết
nguyễn minh tâm
Xem chi tiết

a)Xét ∆ vuông ABH và ∆ADH có : 

AH chung 

BH = HD 

=> ∆ABH =∆ADH (2 cạnh góc vuông) 

b) Xét ∆ABD ta có : 

AH \(\perp\)BC 

BH = HD 

=> AH là trung trực 

=> ∆ABD cân tại A 

=> AB = AD 

ABD = ADB 

AH là phân giác BAD 

=> BAH = DAH 

Mà ADB = EDC ( đối đỉnh) 

Xét ∆ ABH có : 

ABH + BHA + BAH = 180° 

=> BAH = 90° - ABH (1)

Xét ∆ DEC có : 

DEC + ECD + CDE = 180° 

=>  EDC = 90° - EDC (2)

Mà EDC = BDA (cmt)

=> EDC = BDA = ABD (3)

Từ (1) (2) (3) => BAH = ECD (dpcm)

c) Xét ∆ABC có 

BAC + ACB + ABC = 180° 

=> ACB = 90° - ABC 

Mà ECD = ABC (cmt)

=> ECD = BCA 

Hay CB là phân giác ECA 

Vũ Ngọc Linh
Xem chi tiết
Thanh Tùng DZ
26 tháng 4 2020 lúc 15:12

cho tam giác ABC và 3 điểm A',B',C' lần lượt nằm trên 3 cạnh BC,AC,AB ( A',B',C' không trùng với các đỉnh của tam giác )

Khi đó ta có : AA',BB',CC' đồng quy \(\Leftrightarrow\frac{A'B}{A'C}.\frac{B'C}{B'A}.\frac{C'A}{C'B}=1\)

A B C A' B' C'

Khách vãng lai đã xóa
Thanh Tùng DZ
26 tháng 4 2020 lúc 15:33

A B C H E M D P

Gọi P là giao điểm của AD và BE

Áp dụng định lí Ceva vào \(\Delta ABE\),ta có :

\(\frac{BP}{PE}.\frac{HE}{AH}.\frac{AM}{BM}=1\Rightarrow\frac{AH}{HE}=\frac{BP}{PE}\Rightarrow PH//AB\)

\(\Rightarrow\widehat{BAD}=\widehat{DPH}\)

Mà \(\widehat{BAD}=\widehat{DAH}\)

\(\Rightarrow\widehat{DAH}=\widehat{PDH}\Rightarrow\Delta AHP\)cân tại H

\(\Rightarrow HP=AH\)

Cần chứng minh \(DP//CE\Leftrightarrow\frac{BD}{BC}=\frac{BP}{BE}\Leftrightarrow\frac{BD}{BC}=1-\frac{EP}{BE}\)

Ta có : \(\frac{EP}{BE}=\frac{HP}{AB}=\frac{AH}{AB}=\frac{HD}{BD}\)

Khi đó : \(\frac{BD}{BC}=1-\frac{HD}{BD}\Leftrightarrow\frac{BD}{BC}+\frac{HD}{BD}=1\Leftrightarrow BD^2+HD.BC=BC.BD=\left(BD+DC\right).BD\)

\(\Rightarrow HD.BC=CD.BD\Rightarrow\frac{HD}{BD}=\frac{CD}{BC}\Leftrightarrow\frac{AH}{AB}=\frac{CD}{BC}\)

Ta có : \(\widehat{CDA}=\widehat{DBA}+\widehat{BAD}=\widehat{CAH}+\widehat{DAH}=\widehat{CAD}\)

\(\Rightarrow\Delta CAD\)cân tại C \(\Rightarrow CD=CA\)

Từ đó suy ra : \(\frac{AH}{AB}=\frac{AC}{BC}\)    ( đúng vì \(\Delta AHB~\Delta CAB\left(g.g\right)\))

Vậy ta có đpcm

Khách vãng lai đã xóa
Phạm Linh Nhi
Xem chi tiết
pourquoi:)
11 tháng 5 2022 lúc 14:54

a, Xét Δ ABC, có :

\(AB^2+AC^2=BC^2\) (định lí Py - ta - go)

=> \(3^2+4^2=BC^2\)

=> \(25=BC^2\)

=> BC = 5 (cm)

Xét Δ ABC vuông tại A, theo hệ thức lượng có :

\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)

=> \(\dfrac{1}{AH^2}=\dfrac{1}{3^2}+\dfrac{1}{4^2}\)

=> AH = 2,4 cm

b, Xét Δ ABD, có :

HD = HB (gt)

AH là đường cao

=> Δ ABD cân

HUY PHAN
17 tháng 5 2022 lúc 19:29

lol