Tìm 2 số tự nhiên a và b biết ( 23a +5b6) chia hết cho 9 và a-b=3
Bài 1: Tìm các chữ số a và b sao cho
a-b=4 và 7a51b chia hết cho 3
Bài 2: Tìm hai số tự nhiên chia hết cho 9 biết rằng: Tổng của chúng bằng *657 và hiệu bằng 5*91
Bài 3: Tìm số tự nhiên có ba chữ số chia hết cho 5 và 9 biết rằng chữ số hàng chục bằng TBC của 2 số kia
Bài 1 nếu chia hết cho 3 thì 7a5b1 thì \(\frac{7a5b1}{3}=\frac{\left(7+5+1+a+b\right)}{3}=\frac{13+\left(a+b\right)}{3}\)
\(\Rightarrow a+b=2;5;8\)
\(a+b=2\left(loại\right)\)(hiệu k thể > hơn tổng)
\(a+b=5\left(loại\right)\)(vì để tìm \(\frac{b:\left(5-4\right)}{2}=0,5\)mà a và b là số tự nhiên =>a+b=8
\(a=\frac{8+4}{2}=6\)\(b=6-4=2\)
Vậy số cần tìm là 76521
Bài 1 nếu chia hết cho 3 thì 7a5b1 thì 7a5b13=(7+5+1+a+b)3=13+(a+b)37a5b13=(7+5+1+a+b)3=13+(a+b)3
⇒a+b=2;5;8⇒a+b=2;5;8
a+b=2(loại)a+b=2(loại)(hiệu k thể > hơn tổng)
a+b=5(loại)a+b=5(loại)(vì để tìm b:(5−4)2=0,5b:(5−4)2=0,5mà a và b là số tự nhiên =>a+b=8
a=8+42=6a=8+42=6b=6−4=2b=6−4=2
Vậy số cần tìm là 76521
b1
a) tìm các số tự nhiên a,biết rằng a chia hết cho 9 và 105<a<120
b) tìm các số tự nhiên b ,biết rằng b chia hết cho 2 và 5 và 93<b<111
b2
số tự nhiên a chia hết cho số tự nhiên được thương là 12 dư 4 hỏi số a có chia hết cho 6 ko? vì sao
b3
tỉm số tự nhiên a nhỏ nhất biết rằng khi chia a cho 17 thì dư 8 chia cho 25 dư 16
chứng minh rằng số a=10n +18.n-1 chia hết cho 27 (với n là số tự nhiên tùy ý)
Bài 1: a) => tập hợp a = { 108;117 }
b) => tập hợp b = { 90;100;110 }
a, tìm chữ số a biết rằng số tự nhiên: 123a chia hết cho 3 và 5
b, tìm số b ( là số tự nhiên có 1 chữ số ) biết rằng : (459 + 234 - b) chia hết cho 9
1, Tìm hai số tự nhiên a và b biết: a, a2 -a=21
b, a2 + b2 -a - b=2015
2, Cho hai số tự nhiên a và b, chứng minh nếu 11a + 2b chia hết cho 19 thì 18a + 5b cũng chia hết cho 19
3,a, Cho a và b cùng chia hết cho 3. Chứng minh a2 + ab + b2 chia hết cho 9.
b, Cho (a-b)2 + 3ab chia hết cho 9. Chứng minh a chia hết cho 3 hoặc b chia hết cho 3.
Vì a chia hết cho 3 => a2 chia hết cho 9
Vì b chia hết cho 3 => b2 chia hết cho 9
Vì a, b chia hết cho 3 => ab chia hết cho 3.3 = 9
=> a2 + ab + b2 chia hết cho 9
Bài 1: Biểu thức sau có chia hết cho 3 không? Vì sao?
4a + 1 (biết rằng a là số tự nhiên chia cho 3 dư 2).
Bài 2: Tìm x ∈ N sao chi
a) 36 chia hết cho 3x + 1
b) 2x + 9 chia hết cho x + 2
Bài 3: Cho các số tự nhiên a và b thỏa mãn a + 2b chia hết cho 9. Chứng minh rằng các biểu thức sau cũng chia hết cho 9.
a) a + 11b
b) a + 38b
c) a - 7b (với a > b)
d) b. 10n + 6b - a trong đó n ∈ N và b > a.
1: a chia 3 dư 2 nên a=3k+2
4a+1=4(3k+2)+1
=12k+8+1
=12k+9=3(4k+3) chia hết cho 3
2:
a: 36 chia hết cho 3x+1
=>\(3x+1\in\left\{1;-1;2;-2;3;-3;4;-4;6;-6;9;-9;12;-12;18;-18;36;-36\right\}\)
mà x là số tự nhiên
nên 3x+1 thuộc {1;4}
=>x thuộc {0;1}
b: 2x+9 chia hết cho x+2
=>2x+4+5 chia hết cho x+2
=>5 chia hết cho x+2
=>x+2 thuộc {1;-1;5;-5}
=>x thuộc {-1;-3;3;-7}
mà x thuộc N
nên x=3
TL
t i k cho mik đi mik làm cho bài này mik làm rồi
HOk tốt
Bài 1 :
a)
Ta có: 87ab ⋮ 9 ⇔ (8 + 7 + a + b) ⁝⋮ 9 ⇔ (15 + a + b) ⋮ 9
Suy ra: (a + b) ∈ {3; 12}
Vì a – b = 4 nên a + b > 3. Suy ra a + b = 12
Thay a = 4 + b vào a + b = 12, ta có:
b + (4 + b) = 12 ⇔ 2b = 12 – 4
⇔ 2b = 8 ⇔ b = 4
a = 4 + b = 4 + 4 = 8
Vậy ta có số: 8784.
b)
⇒ (7+a+5+b+1) chia hết cho 3
⇔ (13+a+b) chia hết cho 3
+ Vì a, b là chữ số, mà a-b=4
⇒ a,b ∈ (9;5) (8;4) (7;3) (6;2) (5;1) (4;0).
Thay vào biểu thức 7a5b1, ta được :
ĐA 1: a=9; b=5.
ĐA 2: a=6; b=2.
Bài 2 :
Tìm các chữ số ab thỏa mãn a-b=5 và 3a4 + 5b6 chia hết cho 9
TÌM SỐ TỰ NHIÊN X BIẾT
A,X+7 CHIA HẾT CHO 3 VÀ A-B=2
B,2X+9 CHIA HẾT CHO X+1
tìm x là số tự nhiên biết
a) 2x+7 chia hết cho x+2
Tìm các số tự nhiên a, b biết rằng a18b chia hết cho cả 2; 3; 5 và 9.
A. a = 0; b = 0
B. a = 9; b = 0
C. a = 4; b = 5
D. a = 5; b = 4
Đáp án là B
Vì a18b chia hết cho cả 2 và 5 nên b = 0 , ta được số a180
Vì a180 chia hết cho cả 3 và 9 nên hay
Mà a ≠ 0 ⇒ a = 9
Vậy số cần tìm là 9180