Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Anh
Xem chi tiết
nguyen hienmy
17 tháng 11 2018 lúc 22:34

a) xét tg amn và tg bnc có                                             b) xét tg ahn và tg bkn có:

an=nb (gt)                                                                          góc h= góc k =90 độ (bk vuông cn; ah vuông nm)

n1=n2 (đối đỉnh)                                                                 an=nb (gt)

mn=nc (gt)                                                                          n1=n2 (đối đỉnh) 

=> tg amn = tg bnc (c.g.c)                                                  => tg ahn=tg bkn (g.c.g)

                                                                                            => hn=nk (2 cạnh tương ứng)

                                                                                             mà mn=nc(gt) => mh=ck

k cho mk nha , thanks!

thuý trần
18 tháng 11 2018 lúc 6:30

a, xét tg amn và tg bnc có 

an = nb (gt)

n1 = n2 ( dối đỉnh )

mn = nc ( gt )

=> tg amn = tg bnc (c.g.c)

b, xét tg ahn và tg bkn có :

góc h = góc k = 90 độ ( kb vuông cn , ah vuông nm )

an = nb (gt)

n1=n2( đối đỉnh )

=> tg ahn = tg bkn ( g.c.g )

=> hn=nk ( 2 cạnh tương ứng )

mà mn = nc ( gt) => mh = ck

Thảo Vy Nguyễn
Xem chi tiết
MONSTER #8
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 1 2022 lúc 13:36

a: Xét ΔMAC và ΔMBE có 

MA=MB

\(\widehat{AMC}=\widehat{BME}\)

MC=ME

Do đó: ΔMAC=ΔMBE

b: Xét tứ giác ACBE có 

M là trung điểm của AB

M là trung điểm của CE

Do đó:ACBE là hình bình hành

Suy ra: AC//BE

c: \(\widehat{ACM}=90^0-52^0=38^0\)

Hoàng Thanh Thanh
5 tháng 1 2022 lúc 13:36

a) Xét tam giác MAC và tam giác MBE:

+ MA = MB (M là trung điểm của AB).

+ MC = ME (gt).

\(\widehat{AMC}=\widehat{BME}\) (đối đỉnh).

\(\Rightarrow\) Tam giác MAC = Tam giác MBE (c - g - c).

b) Ta có: \(\widehat{MAC}=\widehat{MBE}\) (Tam giác MAC = Tam giác MBE).

Mà 2 góc ở vị trí so le trong.

\(\Rightarrow\) AC // BE (dhnb).

c) Tam giác AMC vuông tại A (\(\widehat{A} =\) \(90^o\)).

\(\Rightarrow\) \(\widehat{AMC}+\widehat{ACM}=\) \(90^o\).

Mà \(\widehat{AMC}=\) \(52^o\left(gt\right).\)

\(\Rightarrow\) \(\widehat{ACM}=\) \(38^o.\)

Võ Thành Đạt
Xem chi tiết
Nguyễn Linh Chi
24 tháng 2 2020 lúc 15:32

A B C H E D M S N K I

Câu a và câu b tham khảo tại link: Câu hỏi của Aftery - Toán lớp 7 - Học toán với OnlineMath

c) Xét \(\Delta\)ABE có AH vuông góc với AE và; HA = HE  

=> AH là đường cao đồng thời là đường trung tuyến của \(\Delta\)ABE 

=> \(\Delta\)ABE cân tại B 

=> AB = BE 

d) Ta có: SN vuông AH ; BC vuông AH 

=> SN //BC 

=> NK //MC 

=> ^KNI = ^MCI 

mặt khác có: NK = MC ; IN = IC ( gt)

=> \(\Delta\)NIK = \(\Delta\)CIM

=> ^NIK = ^CIM mà ^NIK + ^KIC = 180o

=> ^CIM + ^KIC = 180o

=> ^KIM = 180o

=>M; I ; K thẳng hàng

Khách vãng lai đã xóa
Thơ Thiên
Xem chi tiết
Thu Thao
10 tháng 12 2020 lúc 21:55

a/ Xét t/g AMD và t/g BMC có

AM = BM (M là TĐ AB)

\(\widehat{AMD}=\widehat{BMC}\) (đối đỉnh) MD = MC (GT)

=> t/g AMD = t/g BMC (c.g.c)

b/ Xets t/g BMD và t/g AMC có

BM = AM

\(\widehat{BMD}=\widehat{AMC}\)(đối đỉnh) MD = MC (GT)

=> t/g BMD = t/g AMC (c.g.c)

=> \(\widehat{ABD}=\widehat{BAC}=90^o\)

=> BD ⊥ AB (1)

c/  Xét t/g BNE và t/g CNA có

BN = CN (N là TĐ BC)

\(\widehat{BNE}=\widehat{CNA}\) (đối đỉnh) NE = NA (GT)

=> T/g BNE = t/g CNA (c.g.c)

=> \(\widehat{EBN}=\widehat{CAB}=90^o\) (2 góc t/ứ)

=> BE ⊥ AB (2) Từ (1) và (2)

=> D , B , E thẳng hàng

Phương Uyên Võ Ngọc
Xem chi tiết
Đỗ Thị Dung
28 tháng 4 2019 lúc 22:14

bài 1 đề bài có sai ko?

Phương Uyên Võ Ngọc
29 tháng 4 2019 lúc 22:08

Đề đúng nha bạn

IS
22 tháng 2 2020 lúc 20:03

Ta có: ΔABC đều, D ∈ AB, DE⊥AB, E ∈ BC
=> ΔBDE có các góc với số đo lần lượt là: 300
; 600
; 900
 => BD=1/2BE
Mà BD=1/3BA => BD=1/2AD => AD=BE => AB-AD=BC-BE (Do AB=BC)
=> BD=CE. 
Xét ΔBDE và ΔCEF: ^BDE=^CEF=900
; BD=CE; ^DBE=^ECF=600
=> ΔBDE=ΔCEF (g.c.g) => BE=CF => BC-BE=AC-CF => CE=AF=BD
Xét ΔBDE và ΔAFD: BE=AD; ^DBE=^FAD=600
; BD=AF => ΔBDE=ΔAFD (c.g.c)
=> ^BDE=^AFD=900
 =>DF⊥AC (đpcm).
b) Ta có: ΔBDE=ΔCEF=ΔAFD (cmt) => DE=EF=FD (các cạnh tương ứng)
=> Δ DEF đều (đpcm).
c) Δ DEF đều (cmt) => DE=EF=FD. Mà DF=FM=EN=DP => DF+FN=FE+EN=DE+DP <=> DM=FN=EP
Lại có: ^DEF=^DFE=^EDF=600=> ^PDM=^MFN=^NEP=1200
 (Kề bù)
=> ΔPDM=ΔMFN=ΔNEP (c.g.c) => PM=MN=NP => ΔMNP là tam giác đều.
d) Gọi AH; BI; CK lần lượt là các trung tuyến của  ΔABC, chúng cắt nhau tại O.
=> O là trọng tâm ΔABC (1)
Do ΔABC đều nên AH;BI;BK cũng là phân giác trong của tam giác => ^OAF=^OBD=^OCE=300
Đồng thời là tâm đường tròn ngoại tiếp tam giác => OA=OB=OC
Xét 3 tam giác: ΔOAF; ΔOBD và ΔOCE:
AF=BD=CE
^OAF=^OBD=^OCE      => ΔOAF=ΔOBD=ΔOCE (c.g.c)
OA=OB=OC
=> OF=OD=OE => O là giao 3 đường trung trực  Δ DEF hay O là trọng tâm Δ DEF (2)
(Do tam giác DEF đề )
/

(Do tam giác DEF đều)
Dễ dàng c/m ^OFD=^OEF=^ODE=300
 => ^OFM=^OEN=^ODP (Kề bù)
Xét 3 tam giác: ΔODP; ΔOEN; ΔOFM:
OD=OE=OF
^ODP=^OEN=^OFM          => ΔODP=ΔOEN=ΔOFM (c.g.c)
OD=OE=OF (Tự c/m)
=> OP=ON=OM (Các cạnh tương ứng) => O là giao 3 đường trung trực của  ΔMNP
hay O là trọng tâm ΔMNP (3)
Từ (1); (2) và (3) => ΔABC; Δ DEF và ΔMNP có chung trọng tâm (đpcm).

Khách vãng lai đã xóa
ngothithuyhien
Xem chi tiết
Nguyễn Minh Quang
6 tháng 9 2018 lúc 20:24

a) Xét tam giác AHB và tam giác CAB có:

Góc AHB=góc CAB=90 độ(gt)

Góc B chung

=> tam giác AHB đồng dạng tam giác CAB(g.g)

b) Xét tam giác ABC vuông tại A(gt) có: BC2= AB+ AC2 = 225+400=625 => BC=25(cm) (pitago)

Ta có: SABC = 1/2.AB.AC = 1/2.15.20 = 150(cm2)

Nên SABC= 1/2.AH.BC=1/2.AH.25=150(cm2) => AH=12(cm)

Xét tam giác ABC vuông tại H(đường cao AH) có: BH2=AB2-AH2(pitago) => BH=9(cm)

Vậy...

c) Ta có AC/BD=20/30=2/3

Và AM/BH=6/9=2/3

=> AC/BD=AM/BH

Mặt khác ta có Góc ABC+ Góc BAH=90 độ(Góc AHB=90 độ)

Mà góc HAC+ góc BAH=90 độ(vì góc BAC=90 độ)

=> Góc ABC= Góc CAM

Xét tam giác DBH và tam giác CAM có:

Góc ABC = Góc CAM(cmt)

AC/BD=AM/BH(cmt)

=> Tam giác DBH đồng dạng tam giác CAM(c.g.c)

=> HD/MC=BD/AC => HD/BD=MC/AC hay HD.AC=BD.MC

ĐẶNG QUỐC SƠN
30 tháng 4 2019 lúc 10:35

Bạn quang ơi, bạn lấy số liệu ở đâu ra vậy??

embe
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 12 2023 lúc 13:03

a: Xét ΔAMN và ΔACB có

AM=AC

\(\widehat{MAN}=\widehat{CAB}\)(hai góc đối đỉnh)

AN=AB

Do đó: ΔAMN=ΔACB

b: Ta có: ΔAMN=ΔACB

=>\(\widehat{AMN}=\widehat{ACB}\)

mà hai góc này là hai góc ở vị trí so le trong

nên NM//BC

c: Sửa đề: ME=CD

Xét ΔMDA vuông tại D và ΔCEA vuông tại E có

AM=AC

\(\widehat{MAD}=\widehat{CAE}\)(hai góc đối đỉnh)

Do đó: ΔMDA=ΔCEA

=>DA=EA

Xét ΔMAE và ΔCAD có

AM=AC

\(\widehat{MAE}=\widehat{CAD}\)(hai góc đối đỉnh)

AE=AD

DO đó:ΔMAE=ΔCAD

=>ME=CD

Miu Nà
Xem chi tiết