Tìm đa thức bậc 2 sao cho f(x)-f(x-1)=x
Tìm đa thức bậc hai biết f(x) - f(x-1) = x . Từ đó áp dụng tính tổng S = 1 + 2 + 3 + ... + n
CHU ANH TUẤN nếu như biết làm rồi thì giúp bạn cái !!!
Chứ lại sĩ như thế à !!!
Như vậy ko tốt đâu !!!
P/S : Mik sẽ chịu đủ gạch đá từ bạn :(
Cho F(x) là một đa thức bậc 4. Biết rằngF(1)=F(-1);F(2)=F(-2)
Chứng minh rằng F(x)=F(-x) với mọi giá trị của x .
Cho f(x)= x5 + 3x2 − 5x3 − x7 + x3 + 2x2 + x5 − 4x2 + x7; g(x) = x4 + 4x3 − 5x8 − x7 + x3 + x2 − 2x7 + x4 – 4x2 − x8. Thu gọn và sắp xếp các đa thức f(x) và g(x) theo luỹ thừa giảm của biến rồi tìm bậc của đa thức đó.
f(x) = x5 + 3x2 − 5x3 − x7 + x3 + 2x2 + x5 − 4x2 + x7
= (x5 + x5) + (3x2 + 2x2 – 4x2) + (-5x3 + x3) + (-x7 + x7)
= 2x5 + x2 – 4x3.
= 2x5 - 4x3 + x2
Đa thức có bậc là 5
g(x) = x4 + 4x3 – 5x8 – x7 + x3 + x2 – 2x7 + x4 – 4x2 – x8
= (x4 + x4) + (4x3 + x3) – (5x8 + x8) – (x7 + 2x7) + (x2 – 4x2)
= 2x4 + 5x3 – 6x8 – 3x7 – 3x2
= -6x8 - 3x7 + 2x4 + 5x3 - 3x2.
Đa thức có bậc là 8.
Đa thức có bậc là 5 nhe
tìm đa thức bậc 4 f(x) thoả mãn: f(x)-f(x-1)=x3. trình bày sơ lược cách giải. từ đó lập công thức tính tổng quát Sn=1+23+33+43+....+n3 và tính chính xác giá trị của Sn vs n=2011
phantuananh mấy tháng nữa chắc mk cũng chả cần nữa rồi
tìm đa thức bậc 4 f(x) thoả mãn: f(x)-f(x-1)=x3. trình bày sơ lược cách giải. từ đó lập công thức tính tổng quát Sn=1+23+33+43+....+n3 và tính chính xác giá trị của Sn vs n=2011
do có \(1.f\left(x\right)-1.f\left(x-1\right)=...\) nên hệ số của \(x^4\) có thể là bất kì số nào khác 0. Ta lấy là số 1 cho đơn giản.
Đặt \(f\left(x\right)=x^4+ax^3+bx^2+cx+d\)
Thay x = -1,0,1,2 (hoặc 4 số bất kì) vào \(f\left(x\right)-f\left(x-1\right)=x^3\), ta được hệ 4 ẩn, 4 pt bậc nhất, từ đó giải ra a, b, c, d.
Thay vô Sn.
tìm đa thức bậc 4 f(x) thoả mãn: f(x)-f(x-1)=x3. trình bày sơ lược cách giải. từ đó lập công thức tính tổng quát Sn=1+23+33+43+....+n3 và tính chính xác giá trị của Sn vs n=2011
Gọi F(x) = \(ax^4+bx^3+cx^2+dx+e\)
=> F(x-1) = \(a\left(x-1\right)^4+b\left(x-1\right)^3+c\left(x-1\right)^2+d\left(x-1\right)+e\)
F(x) - f(x-1) = x^3 . Rút gọn sau đó cho hệ số bằng nhau
\(Sn=1+2^3+3^3+4^3+...+n^3=\left(1+2+...+n\right)^2=\left(\frac{n\left(n-1\right)}{2}\right)^2\)
Dễ dàng cm bằng pp quy nạp
Với n = 2011 => S2011 =.....
cho đa thức : f(x) = 2x2- 3x + 4
a. tính giá trị của f(x) tại x=2
b. tìm đa thức h(x) biết : h(x) - f(x) = -2x2 + x - 1
a: f(2)=2*2^2-3*2+4=8-6+4=2+4=6
b: h(x)=-2x^2+x-1+f(x)
=-2x^2+x-1+2x^2-3x+4
=-2x+3
\(a,\) \(f\left(2\right)=2.2^2-3.2+4\) \(\Rightarrow f\left(2\right)=6\)
\(b,h\left(x\right)-f\left(x\right)=-2x^2+x-1\)
\(\Rightarrow h\left(x\right)=-2x^2+x-1+f\left(x\right)\)
\(\Rightarrow h\left(x\right)=-2x^2+x-1+2x^2-3x+4\)
\(\Rightarrow h\left(x\right)=-2x+3\)
Bài 1 : Cho \(f\left(x\right)=x^3-2ax+b\). Tìm a,b biết đa thức có hai nghiệm là f(1)=-1 và f(0)=2
Bài 2 . Cho \(f\left(x\right)=x^3-2ax+b\). TÌm a,b biết đa thức có hai nghiệm là 0 và 3
Dư của đa thức f(x) cho x-1; x-2 lần lượt là 2 và 5. Tìm dư của phép chia đa thức f(x) cho x^2-3x+2 ?
Tiếp nhé các bn.