Chứng minh rằng đa thức h(x)=5x^2+1+x^4 không có nghiệm.
a) Kiểm tra xem 1,-2,1/2 có phải là nghiệm của đa thức P(x)= x^3 - x^2 - 4x + 4 hay ko?
b) Chứng minh rằng đa thức P(x)= 5x^3 - 7x^2 + 4x -2 có một nghiệm là 1
a: \(P\left(1\right)=1^3-1^2-4\cdot1+4=-4+4=0\)
=>x=1 là nghiệm của P(x)
\(P\left(-2\right)=\left(-2\right)^3-\left(-2\right)^2-4\cdot\left(-2\right)+4=-8-4+8+4=0\)
=>x=-2 là nghiệm của P(x)
b: \(P\left(1\right)=5\cdot1^3-7\cdot1^2+4\cdot1-2=5-7+4-2=0\)
=>x=1 là nghiệm của P(x)
cho các đa thức: f(x)=11x^4-3x^3-x^2-x-2 g(x)=3x^4+3x^3+5x^2+x-3 đặt h(x)=f(x)-g(x)
a,tính căn của h(-3/2)-3/2
b,chứng minh rằng h(x)không có nghiệm nguyên
6. Biết rằng phương trình x 3 −3x 2 +3 = 0 có ba nghiệm phân biệt. Chứng minh rằng trong ba nghiệm này có hai nghiệm a,b thoả mãn ab+3 = a+2b.
7. Cho đa thức P(x) = 2x 4 −x 3 −5x 2 +5x−5. Gọi a,b, c là ba nghiệm phân biệt của đa thức Q(x) = x 3 −3x+1. Tính P(a).P(b).P(c).
8. Biết rằng phương trình P(x) = x 3 +3x 2 −1 có ba nghiệm phân biệt a < b < c. Chứng minh rằng c = a 2 +2a− 2,b = c 2 +2c−2,a = b 2 +2b−2.
chứng minh rằng 2 không là nghiệm của đa thức M(x)=x4+3x3-5x2+7x+2
Thay 2 vào M( x) ta có :
M(2) = 24+3.23- 5.22+7.2 +2
M(2) = 36
36 Khác 0 suy ra :
2 không là nghiệm của M(x)
thay x=2 vào M(x)
24+3.23-5.22+7.2+2=0
36=0 ( vô lý)
vây x =2 k là nghiệm
Cho đa thức: \(f\left(x\right)=5x^3+2x^4-x^2+3x^2-x^3-x^4+1-4x^3\). Chứng tỏ rằng đa thức trên không có nghiệm.
P(x)= 5x^3 +2x^4 - x^3 -3x^2 - x^4 +1 - 4x^3
Chứng minh rằng đa thức không có nghiệm
Ai giúp em với ? T6 này em thi rồi . Dễ hiểu nha cảm ơn
Chứng Minh Rằng : Đa thức h(x) = x^2 + 3x + 10 không có nghiệm
Ta có:\(x^2+3x+10=x^2+2.\frac{3}{2}.x+\left(\frac{3}{2}\right)^2+10-\left(\frac{3}{2}\right)^2\)
\(=\left(x+\frac{3}{2}\right)^2+10-\frac{9}{4}=\left(x+\frac{3}{2}\right)^2+\frac{31}{4}\)
Vì \(\left(x+\frac{3}{2}\right)^2\ge0\Rightarrow\left(x+\frac{3}{2}\right)^2+\frac{31}{4}\ge\frac{31}{4}>0\) nên đa thức vô nghiệm
Ta có: h(x)=x^2+3x+10
=x^2+1,5x+1,5x+2,25+7,75
=x(x+1,5)+1,5(x+1,5)+7,75
=(x+1,5)(x+1,5)+7,75
=(x+1,5)^2+7,75
Vì (x+1,5)^2>=0 với mọi x
Nên (x+1,5)^2+7,75>0 hay h(x)>0
Do đó h(x) vô nghiệm (Đpcm)
Chứng minh rằng đa thức x^4+x^3+x^2+x+1 không có nghiệm với mọi x
\(x^4+x^3+x^2+1\)
\(\Leftrightarrow x^4+x^3+\frac{x^2}{4}+\frac{3x^2}{4}+x+\frac{1}{3}+\frac{2}{3}=0\)
\(\Leftrightarrow x^2\left(x+\frac{1}{2}\right)^2+\left(\frac{\sqrt{3}x}{2}+\frac{1}{\sqrt{3}}\right)^2+\frac{2}{3}\)
Ta thấy:\(x^2\left(x+\frac{1}{2}\right)^2+\left(\frac{\sqrt{3}x}{2}+\frac{1}{\sqrt{3}}\right)^2+\frac{2}{3}>0\)với mọi x
=>vô nghiệm
\(x^4+x^3+x^2+x+1=x^4+\left(x^3+x^2\right)+\left(x+1\right)\)
\(=x^4+x\left(x+1\right)+\left(x+1\right)\)
\(=x^4+\left(x+1\right)^2\)
\(x^4\ge0\)
\(\left(x+1\right)^2\ge0\)
\(\Rightarrow x^4+\left(x+1\right)^2\ge0\)
Giả sử đa thức \(x^4+x^3+x^2+x+1=0\)(có nghiệm )
\(\Rightarrow\hept{\begin{cases}x^4=0\\\left(x+1\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\x=-1\end{cases}}\)(vô lý vì x không thể nhận 2 giá trị cùng 1 lúc)
Do đó \(x^4+x^3+x^2+x+1\) không nghiệm.
chứng minh đa thức sau f(x)=(2x^2+4)^2+(5x+1)^2 không có nghiệm
ai nhanh mình tick
Ta có \(2x^2\ge0\Rightarrow2x^2+4\ge4>0\Rightarrow\left(2x^2+4\right)^2>0\)
mà\(\left(5x+1\right)^2\ge0\)
Do đó \(f\left(x\right)=\left(2x^2+4\right)^2+\left(5x+1\right)^2>0\)với mọi giá trị của x nên vô nghiệm.