tìm a,b biết 4a+2b=8/3 và a+b=2
Tìm a,b,c biết \(\dfrac{3c-4b}{2}=\dfrac{4a-2c}{3}=\dfrac{2b-3a}{4}\) và c+b-a = -30
Đề ôn tập HK 2 - Đề 8
Bài 1:
a) Biết -3a - 1 > -3b - 1. So sánh a và b?
b) Biết 4a + 3 < 4b + 3. So sánh a và b?
Bài 2: Biết a < b, hãy so sánh:
a) 3a - 7 và 3b - 7. b) 5 - 2a và 3 - 2b
c) 2a + 3 và 2b + 3. d) 3a - 4 và 3b - 3
Bài 3: a) Chứng minh pt: x² + 6x + 11 = 0 vô nghiệm
b) Chứng minh bất pt: 5x² + 16 ≥ 0 có vô số nghiệm.
1.
a. -3a - 1 + 1 > -3b - 1 + 1 (cộng cả 2 vế cho 1)
-3a . \(\left(\dfrac{-1}{3}\right)\) < -3b . \(\left(\dfrac{-1}{3}\right)\) (nhân cả vế cho \(\dfrac{-1}{3}\) )
a < b
b. 4a + 3 + (- 3) < 4b + 3 +(- 3) (cộng cả 2 vế cho -3)
4a . \(\dfrac{1}{4}\) < 4b . \(\dfrac{1}{4}\) (nhân cả 2 vế cho \(\dfrac{1}{4}\) )
a < b
2.
a. Ta có: a < b
3a < 3b ( nhân cả 2 vế cho 3)
3a - 7 < 3b - 7 (cộng cả 2 vế cho - 7 )
b. Ta có: a < b
-2a > -2b (nhân cả 2 vế cho -2)
5 - 2a > 5 - 2b ( cộng cẩ 2 vế cho 5)
c. Ta có: a < b
2a < 2b (nhân cả vế cho 2)
2a + 3 < 2b + 3 (cộng cả 2 vế cho 3)
d. Ta có: a < b
3a < 3b (nhân cả 2 vế cho 3)
3a - 4 < 3b - 4 (cộng cả 2 vế cho -4)
Ta có: 3 < 4
đến đây ko bắt cầu qua đc chắc đề bài sai
Tìm 2 số a và b biết a+b = 1 ; 4a+2b= 1
Ta có : a + b = 1
=> 2a + 2b = 2
Ta có : 4a + 2b - (2a + 2b) = 1 - 2
<=> 4a + 2b - 2a - 2b = -1
=> 2a = -1
=> a = -1/2
=> b = 1 - (-1/2)
=> b = 3/2
\(\hept{\begin{cases}a+b=1\\4a+2b=1\end{cases}}\Rightarrow\hept{\begin{cases}2a+2b=2\\2a+2b+2a=1\end{cases}}\Rightarrow\hept{\begin{cases}2a+2b=2\\2+2a=1\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}2a+2b=2\\2a=-1\end{cases}}\Rightarrow\hept{\begin{cases}2a+2b=2\\a=-\frac{1}{2}\end{cases}}\Rightarrow\hept{\begin{cases}b=\frac{\left(2-2.\frac{-1}{2}\right)}{2}=\frac{3}{2}\\a=\frac{1}{2}\end{cases}}\)
cho a,b thỏa mãn a^3-b^3+3(a^2-2b^2)+4a-13b=8. Tìm giá trị nhỏ nhất của S=a^2+b^2+a+b+1
a) Tìm 3 số a,b,c biết \(\frac{3a-2b}{5}=\frac{2c-5a}{3}=\frac{5b-3c}{2}\) và a+b+c=-50
b) tìm 3 số a,b,c biết ab=c ; bc=4a ; ac=9b
Ta có :
\(\frac{3a-2b}{5}=\frac{2c-5a}{3}=\frac{15a-10b}{25}=\frac{6c-15a}{9}\)
\(=\frac{15a-10b+6c-15a}{25+9}=\frac{6c-10b}{34}=\frac{3c-5b}{17}=\frac{5b-3c}{2}\) = 0
=> a+b+c = 5a = - 50 => a = -10; b = -15 ; c = -25
Cho a>b . Chứng minh 2a-3 và 2b-3
cho -4a+1 < -4b+1 . So sánh a và b.
c)Biết 3-4a < 5c +2 và 5c-1<-4b. So sánh a và b
a) Ta có: a>b => 2a > 2b (nhân 2 vế với 2)
=> 2a - 3 > 2b - 3 (cộng 2 vế với -3)
b) Ta có: -4a+1 < -4b+ 1 => -4a < -4b ( cộng 2 vế với -1)
=> a > b (nhân 2 vế với -1/4)
c) Ta có: 3-4a < 5c+2 => 3-4a-3 < 5c+2-3 (cộng 2 vế với -3)
=> -4a < 5c-1
Mà 5c-1 < -4b nên -4a < -4b => a > b (nhân cả 2 vế với -1/4)
Tìm a, b ( a, b thuộc N* )biết :
a + b = 26 và 4a - 2b =20
ta có a+b = 26 suy ra 2a + 2b = 52 (1)
mà 4a - 2b = 20 (2)
Từ (1) và (2) suy ra 6a = 72
suy ra a=12
suy ra b = 26-12=14
Vậy a=12, b=14
ta có a + b = 26
=> 2.( a + b ) = 2 . 26
=> 2a + 2b = 52 (1)
ta lại có 4a - 2b = 20 (2)
cọng vế với vế của (1) và (2) ta có
2a + 2b + 4a - 2b = 52 + 20
=> 6a = 72
=> a = 12
thay a = 12 vào (1) ta có
12.2 + 2b = 52
=> 2b = 52 - 24
=> 2b = 28
=> b = 14
vậy a = 12 , b = 14
p/s : ko chắc
Ta có: 4a - 2b = 20 <=> 2a - b = 10 => b = 2a - 10
Thay b = 2a - 10 vào a + b = 26 ta dc: a + 2a - 10 = 26 <=> 3a = 36 <=> a = 12
=> b = 2.12-10 = 14
Vậy a= 12 và b = 14
Tìm a,b,c biết:
a^2+b^2+c^2=4a-2b+6c-14
đề bai
<=> \(a^2+b^2+c^2-4a-6c+2b+14=0\)
<=> \(\left(a^2-4a+4\right)+\left(b^2+2b+1\right)+\left(c^2-6c+9\right)=0\)
<=> \(\left(a-2\right)^2+\left(b+1\right)^2+\left(c-3\right)^2=0\)
mà \(\left(a-2\right)^2+\left(b+1\right)^2+\left(c-3\right)^2\ge0\)
dấu = xảy ra <=> \(\hept{\begin{cases}a=2\\b=-1\\c=3\end{cases}}\)
vậy ...
1) cho: 4a^3-3a+(b-1)\(\sqrt{2b+1}\)=0
biết \(\frac{-1}{2}\)=<b=<0 . Cmr: \(\sqrt{2b+1}\)+2a=0
2)cho (4a^2+1)a+(b-3)\(\sqrt{5-2b}\)=0
biết a>=0 Cmr: 2b+4a^2=5