Cho a+b+c+d ≠ 0 và \(\dfrac{a}{b+c+d}=\dfrac{b}{a+c+d}=\dfrac{c}{b+a+d}=\dfrac{d}{c+b+a}\)
Tính giá trị biểu thức:
P = \(\dfrac{2a+5b}{3c+4d}-\dfrac{2b+5c}{3d+4a}+\dfrac{2c+5d}{3a+4b}+\dfrac{2d+5a}{3c+4b}\)
Cho a+b+c+d ≠ 0 thỏa mãn:
\(\dfrac{a}{b+c+d}=\dfrac{b}{a+c+d}=\dfrac{c}{b+a+d}=\dfrac{d}{c+b+a}\)
Tính P = \(\dfrac{2a+5b}{3c+4d}+\dfrac{2b+5c}{3d+4a}+\dfrac{2c+5d}{3a+4b}+\dfrac{2d+5a}{3c+4b}\)
Cho \(\dfrac{a}{b}=\dfrac{c}{d}\). Chứng minh:
1) \(\dfrac{2a+3c}{2b+3d}=\dfrac{2a-3c}{2b-3d}\)
2) \(\dfrac{4a-3b}{4c-3d}=\dfrac{4a+3b}{4c+3d}\)
3) \(\dfrac{3a+5b}{3a-5b}=\dfrac{3c+5d}{3c-5d}\)
4) \(\dfrac{3a-7b}{b}=\dfrac{3c-7d}{d}\)
Cho a,b,c>0 và dãy tỉ số\(\dfrac{2b+c-a}{a}=\dfrac{2c-b+a}{b}=\dfrac{2a+b-c}{c}\)
Tính P = \(\dfrac{\left(3a-2b\right)\left(3b-2c\right)\left(3c-2a\right)}{\left(3a-c\right)\left(3b-a\right)\left(3c-b\right)}\)
2c-4a/3=4b-3c/2=3a-2b/4 và a+b+c=-18
Tìm a,b,c
Bài 1:
a) Tìm a,b,c biết (3c - 4b)/ 2 = (4a-2c) /3 = (2b - 3a) / 4; c + b + 2a = -27
b) Tìm x, y, z biết (3x - 4y) /5 = (5y - 3c) /4 = (4x - 5z) / 3 ; x^2 - z^3 = 36
Cho 3a-2b/4 = 2c-4a/3 = 4b-3c/2
a) CM a,b,c lần lượt 2,3,4
b)Biết 2a-3b+c = 84. Tìm a,b,c
Tìm ba số a,b,c biết \(\dfrac{3a-2b}{5}=\dfrac{2c-5a}{3}=\dfrac{5b-3c}{2}\)và a2+275=bc.
Giúp với mai là mình phải nạp rùi.^_^
cho các số a,b,c thỏa mãn 3a-2b/4=2c-4a/3=4b-3c/2 tính giá trị biểu thức A=3a+2b-c/3a-2b+c + 2a^2-b^2+c^2/2a^2+b^2-c^2