a) chứng minh rằng: a/b=c/d thì a/b=a+_c/b+_d
b) tìm x và y biết: x/5=y/3 và x+y=16
a. chứng minh rằng a/b =c/d thì a/b =a+c /b+d
b. tìm x và y biết x/5=y/3 và x+y=16
Ta có: \(\frac{a}{b}=\frac{c}{d}\)
Áp dụng t/c của dãy tỉ số = nhau, ta có:
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)
=> \(\frac{a}{b}=\frac{a+c}{b+d}\)(đpcm)
Vậy\(\frac{a}{b}=\frac{a+c}{b+d}\)
a) Đặt a/b=c/d=k(k thuộc Q)
Suy ra a=b.k
c=d.k
Ta có :a+c/b+d=b.k+dk/d+b=k.(b+d)/b+d=k
a/b=bk/b=k(2)
c/d=dk/d=k(3)
Từ (1);(2);(3) suy ra a/b=c/d
b) Ta có:x/5=y/3=x+y/5+3=16/8=2
x/5=2 suy ra x=10
y/3=2 suy ra y=6
a) Chứng minh rằng a/b = c/d thì a/b = a+-c/ b+-d
b) Tìm x và y biết x/5 = y/3 và x+y = 16
a)Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{c}{d}=\frac{a-c}{b-d}=\frac{a+\left(-c\right)}{b+\left(-d\right)}\)
Vậy ta có điều phải chứng minh
b)Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{5}=\frac{y}{3}=\frac{x+y}{5+3}=\frac{16}{8}=2\)
=>x=2.5=10
y=2.3=6
Vậy x=10 và y=6
b) theo đề ta có: \(\frac{x}{5}=\frac{y}{3}\) và x + y = 16
áp dụng t/c DTSBN ta có:
\(\frac{x}{5}=\frac{y}{3}=\frac{x+y}{5+3}=\frac{16}{8}=2\)
=> \(\frac{x}{5}=2=>x=10\)
\(\frac{y}{3}=2=>y=6\)
vậy x = 10 ; y = 6
chúc bn hok tốt!!
573578769870678567362345215345645654654657657566876894637537
1, Chứng minh rằng \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}=\frac{a+c}{b+d}=\frac{a-c}{b-d}\)
2, Tìm x và y biết \(\frac{x}{5}=\frac{y}{3}\)và x+y = 16
bạn Nguyễn Tuyết Mai có biết trả lời không vậy
1.Tìm x và y biết
a) x/3=y/5 và x+y=16
b) x/2=y/3=2/4 và x-y+z=3
2.Cho biết a/b=c/d chứng minh rằng a/a-b=c/c-d
À mà mấy cái x/3,... có nghĩa là x phần 3 những dấu / có nghĩa là phần đó
a) Áp dụng tc dãy tỉ số = nhau ta có;
\(\frac{x}{3}=\frac{y}{5}=\frac{x+y}{3+5}=2\)
Khi đó: \(\hept{\begin{cases}\frac{x}{3}=2\Rightarrow x=6\\\frac{y}{5}=2\Rightarrow y=10\end{cases}}\)
Vậy \(\hept{\begin{cases}x=6\\y=10\end{cases}}\).
b) Áp dụng tc dãy tỉ số = nhau ta có:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x-y+z}{2-3+4}=\frac{3}{3}=1\)
Khi đó: \(\hept{\begin{cases}\frac{x}{2}=1\Rightarrow x=2\\\frac{y}{3}=1\Rightarrow y=3\\\frac{z}{4}=1\Rightarrow z=4\end{cases}}\)
Vậy ....
2. Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}\left(1\right)}\)
Thay (1) vào đề: \(VT=\frac{a}{a-b}=\frac{bk}{bk-b}=\frac{bk}{b\left(k-1\right)}=\frac{k}{k-1}\)
\(VP=\frac{c}{c-d}=\frac{dk}{dk-d}=\frac{dk}{d\left(k-1\right)}=\frac{k}{k-1}\)
\(\Rightarrow VT=VP\)
\(\Leftrightarrow\frac{a}{a-b}=\frac{c}{c-d}\rightarrowĐpcm.\)
Bài 1 : a) Cho 4 điểm A (0;-5) , B (1;-2), C (2;1), D(2,5;2,5). Chứng minh rằng A,B,C,D thẳng hàng
b) Tìm x sao cho 3 điểm A (x;14) , B(-5;20) ; C (7 ; -16) thẳng hàng
Bài 2 : Chứng minh rằng nếu 1 đường thẳng đi qua điểm A (x1; y1) và hệ số góc bằng a thì đường thẳng đó có ptrình là y-y1 = a (x -x1)
1 ) Tìm các số x , y , z biết :
a ) x / -2 = y / 3 = z / -5 và x - y + z = 20
b ) x / 10 = y / 6 = z / 21 và 5x + y - 2z = 28
c ) x / 3 = y / 4 ; 5y = 3z và 2x - 3y + z = 6
d ) x / 2 = y / 3 = z / 5 và x , y , z = 810
2 ) Cho a / b = b / c = c / a
Chứng minh rằng : a = b = c
3 ) Cho x = a / b + c = b / c + a = c / a + b với a + b + c khác 0 . Tính x ?
B2:
a/b=b/c=c/a=a+b+c/b+c+a=1
suy ra a/b=1 suy ra a=b=1(vì hai số bằng nhau mới có tích là 1)
...................................................................................................
với b/c và c/a cũng tương tự như trên và sẽ suy ra a=b=c
Bạn TV Hoàng Linh giải câu 3 với câu 1 giùm mình nha
Làm giúp mk nha
1.2x=3y;5y=7z;3x+5y-7z=30
1,tìm các số x,y,z biết rằng
\(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\)và 2x+3y-z=186
2,cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)chứng mih rằng \(\frac{a+b+c}{b+c+d}\)tất cả mủ 3 =\(\frac{a}{d}\)
3,cho\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)chứng minh rằng a=b=c
4,cho\(\frac{a}{2}=\frac{b}{5}\)và a.b=90.tìm a và b
5,tìm x,y,z biết \(\frac{y+z+1}{x}=\frac{y+z+2}{y}=\frac{x+y-3}{2}=\frac{1}{x+y+z}\)
a) Tìm các số tự nhiên x,y biết rằng \(\dfrac{3+x}{7+y}\) = \(\dfrac{3}{7}\) và \(x+y=20\)
b) Cho các số\(a,b,c\) là các số nguyên. Biết tích \(ab\) là số liền sau tích \(cd\) và \(a+b=c+d\) . Chứng minh rằng \(a=b\)
a) Ta có: \(\dfrac{3+x}{7+y}=\dfrac{3}{7}\)
\(\Leftrightarrow\dfrac{x+3}{3}=\dfrac{y+7}{7}\)
mà x+y=20
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x+3}{3}=\dfrac{y+7}{7}=\dfrac{x+y+3+7}{3+7}=\dfrac{20+10}{10}=3\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x+3}{10}=3\\\dfrac{y+7}{7}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+3=30\\y+7=21\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=27\\y=14\end{matrix}\right.\)
Vậy: x=27; y=14
Toán nâng cao:
a) Cho a/b = c/d. Chứng minh: a/3a + b = c/3c + d
b) Cho a/b = c/d. Chứng minh rằng: (a - b)2/(c - d)2 = ab/cd
c) Tìm x, y, z biết: x/3 = y/7 = z/2 và 2x2 + y2 + 3z2 = 316
a, Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}=>\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{3a}{3c}\)
Áp dụng tính chất của day tỉ số bằng nhau ta được:
\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{3a}{3c}=\dfrac{3a+b}{3c+d}\)
\(=>\dfrac{a}{c}=\dfrac{3a+b}{3c+d}=>\dfrac{a}{3a+b}=\dfrac{c}{3c+d}=>\left(đpcm\right)\)
Bài 1:
Ta có:\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{3a}{3c}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta được:
\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{3a}{3c}=\dfrac{3a+b}{3c+d}\)
(ĐPCM)
b, Ta có \(\dfrac{a}{b}=\dfrac{c}{d}=>\dfrac{a}{c}=\dfrac{b}{d}\)
Đặt \(\dfrac{a}{c}=\dfrac{b}{d}=x\)
Xét \(x^2=\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}=\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{ab}{cd}\)
=>(đpcm)