tim GTLN A =x^2+2y^2+2xy+2x-4y+2013
tim gtln x2+2y2-2xy+2x-4y+11
\(=\left(x^2-2xy+y^2\right)+\left(y^2-4y+4\right)+7\)
\(=\left(x-y\right)^2+\left(y-2\right)^2+7\ge7\left(do\left(x-y\right)^2;\left(y-2\right)^2\ge0\right)\)
Vậy max =7 khi \(\hept{\begin{cases}x-y=0\\y-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=2\end{cases}}}\)
Diệu Vy làm sai rồi , không phải a con số 2x hay sao
tìm gtnn
d. D(x) = 2x² + 3y² + 4xy-8x-2y + 18 e. E(x) = 2x² + 3y² + 4z²-2(x+y+z) + 2 f F(x)=2x² +8xy + 11y2-4x-2y+6 g. G(x)=2x²+2y+z²+2xy-2xz-2yz-2x-4y h. H(x)=x² + y²-xy-x+y+1 Bài 2: Tim GTLN của các biểu thức sau a. A=4x²-5y² +8xy+10y+12
b.B=-x²-y²+xy+2x+2y
tìm gtnn
d. D(x) = 2x² + 3y² + 4xy-8x-2y + 18 e. E(x) = 2x² + 3y² + 4z²-2(x+y+z) + 2 f F(x)=2x² +8xy + 11y2-4x-2y+6 g. G(x)=2x²+2y+z²+2xy-2xz-2yz-2x-4y h. H(x)=x² + y²-xy-x+y+1 Bài 2: Tim GTLN của các biểu thức sau a. A=4x²-5y² +8xy+10y+12
b.B=-x²-y²+xy+2x+2y
tìm gtnn
d. D(x) = 2x² + 3y² + 4xy-8x-2y + 18 e. E(x) = 2x² + 3y² + 4z²-2(x+y+z) + 2 f F(x)=2x² +8xy + 11y2-4x-2y+6 g. G(x)=2x²+2y+z²+2xy-2xz-2yz-2x-4y h. H(x)=x² + y²-xy-x+y+1 Bài 2: Tim GTLN của các biểu thức sau a. A=4x²-5y² +8xy+10y+12
b.B=-x²-y²+xy+2x+2y
Ta có:
D=2x2+3y2+4xy−8x−2y+18C=2x2+3y2+4xy−8x−2y+18
D=2(x2+2xy+y2)+y2−8x−2y+18C=2(x2+2xy+y2)+y2−8x−2y+18
D=2[(x+y)2−4(x+y)+4]+(y2+6y+9)+1C=2[(x+y)2−4(x+y)+4]+(y2+6y+9)+1
D=2(x+y−2)2+(y+3)2+1≥1C=2(x+y−2)2+(y+3)2+1≥1
Dấu "=" xảy ra ⇔x+y=2⇔x+y=2và y=−3y=−3
Hay x = 5 , y = -3
Đc chx bạn
Tính GTLN A=5-x^2+4x
B=-4x^2+12x-1
C=-x+2xy+4y^2+2x+10y+5
D=-x^2-2y^2-2xy+2x-2y-15
a: \(A=-x^2+4x+5\)
\(=-\left(x^2-4x-5\right)\)
\(=-\left(x^2-4x+4-9\right)\)
\(=-\left(x-2\right)^2+9\le9\)
Dấu '=' xảy ra khi x=2
b: \(B=-4x^2+12x-1\)
\(=-\left(4x^2-12x+1\right)\)
\(=-\left(4x^2-12x+9-8\right)\)
\(=-\left(2x-3\right)^2+8\le8\)
Dấu '=' xảy ra khi x=3/2
Tìm GTLN của
A= -x2 +2xy - 4y2 + 2x + 10y +5
B= -x2 - 2y2 -2xy + 2x - 2y -15
Tìm GTLN của:A=-x^2-2y^2+2xy+2x-4y+100
\(A = - x^{2} - 2 y^{2} + 2 x y + 2 x - 4 y + 100\)
Nhóm thành:
\(A = - \left(\right. x^{2} - 2 x y + 2 y^{2} \left.\right) + 2 x - 4 y + 100\)
2. Nhận dạng hằng đẳng thức\(x^{2} - 2 x y + 2 y^{2} = \left(\right. x - y \left.\right)^{2} + y^{2}\)
Suy ra:
\(A = - \left(\right. \left(\right. x - y \left.\right)^{2} + y^{2} \left.\right) + 2 x - 4 y + 100\) \(A = - \left(\right. x - y \left.\right)^{2} - y^{2} + 2 x - 4 y + 100\)
3. Đặt ẩn phụĐặt \(u = x - y \textrm{ }\textrm{ } \Rightarrow \textrm{ }\textrm{ } x = u + y\).
Thay vào:
\(A = - u^{2} - y^{2} + 2 \left(\right. u + y \left.\right) - 4 y + 100\) \(A = - u^{2} - y^{2} + 2 u + 2 y - 4 y + 100\) \(A = - u^{2} - y^{2} + 2 u - 2 y + 100\)
4. Phân tích theo từng biến\(A \left(\right. u , y \left.\right) = - \left(\right. u^{2} - 2 u \left.\right) - \left(\right. y^{2} + 2 y \left.\right) + 100\) \(= - \left(\right. u^{2} - 2 u + 1 \left.\right) + 1 - \left(\right. y^{2} + 2 y + 1 \left.\right) + 1 + 100\) \(= - \left(\right. u - 1 \left.\right)^{2} - \left(\right. y + 1 \left.\right)^{2} + 102\)
5. Tìm giá trị lớn nhấtVì \(- \left(\right. u - 1 \left.\right)^{2} \leq 0\) và \(- \left(\right. y + 1 \left.\right)^{2} \leq 0\), nên giá trị lớn nhất đạt được khi\(u - 1 = 0 \text{v} \overset{ˋ}{\text{a}} y + 1 = 0\)
Tức là \(u = 1 , y = - 1\).
Khi đó:Amax=102A_{\max} = 102Amax=102
✅ Đáp số:
Amax=102A_{\max} = 102Amax=102
(Đạt được khi \(x = u + y = 1 + \left(\right. - 1 \left.\right) = 0 , \textrm{ }\textrm{ } y = - 1\))
1.Tìm GTLN:
a)-2x^2+4x-18
b)-2x^2-12x+12
c)-2x^2+2xy-5y^2+4y+2x+1
2.Tìm x,y:
a)x^2-2x+4y^2+4y+2
b)4x^2-8x+y+2y
\(1.\)
\(a;A=-2x^2+4x-18\)
\(A=-2\left(x^2-4x+18\right)\)
\(A=-2\left(x^2-2.x.2+4+14\right)\)
\(A=-2\left(x-2\right)^2-14\le-14\)
Dấu = xảy ra khi : \(x-2=0\)
\(\Rightarrow x=2\)
Vậy Amax =-14 tại x = 2
Các câu còn lại lm tương tự........
1.Tìm GTLN:
a)-2x^2+4x-18
b)-2x^2-12x+12
c)-2x^2+2xy-5y^2+4y+2x+1
2.Tìm x,y:
a)x^2-2x+4y^2+4y+2
b)4x^2-8x+y+2y
\(a-2x^2+4x-18\)
=-[(2x2-2x.2+4)+14]
=-[(2x-2)2+14]
=-(2x-2)2-14
Vì -(2x-2)2 bé hơn hoặc bằng 0 với mọi x nên -(2x-2)2-14 bé hơn hoặc bằng -14
Dấu "=" xảy ra khi x=1
Vậy GTLN là -14 tại x=1
Mấy bài khác tương tự nha bạn. Áp dụng hằng đẳng thức và trình bày như thế
bài 2 xem lại cách ra đề nha bạn