\(\frac{29-x}{21}+\frac{27-x}{23}+\frac{25-x}{25}+\frac{23-x}{27}+\frac{21-x}{29}=-5\)-5
\(\frac{29-x}{21}+\frac{27-x}{23}+\frac{25-x}{25}+\frac{23-x}{27}+\frac{21-x}{29}=-5\)
Giải phương trình
\(pt\Leftrightarrow\frac{29}{21}-\frac{x}{21}+\frac{27}{23}-\frac{x}{23}+\frac{25}{25}-\frac{x}{25}+\frac{23}{27}-\frac{x}{27}+\frac{21}{29}-\frac{x}{29}=-5\Leftrightarrow-x\left(\frac{1}{21}+\frac{1}{23}+\frac{1}{25}+\frac{1}{27}+\frac{1}{29}\right)=-5-\frac{29}{21}-\frac{27}{23}-\frac{25}{25}-\frac{23}{27}-\frac{21}{29}\Leftrightarrow-x=\frac{-5-\frac{29}{21}-\frac{27}{23}-\frac{25}{25}-\frac{23}{27}-\frac{21}{29}}{\frac{1}{21}+\frac{1}{23}+\frac{1}{25}+\frac{1}{27}+\frac{1}{29}}=-50\Leftrightarrow x=50\\ \Rightarrow S=\left\{50\right\}\)
Giải phương trình sau : \(\frac{29-x}{21}+\frac{27-x}{23}+\frac{25-x}{25}+\frac{23-x}{27}+\frac{21-x}{29}=-5\)
\(pt\Leftrightarrow\frac{29-x}{21}+1+\frac{27-x}{23}+1+...=0\)
\(\Leftrightarrow\frac{50-x}{21}+\frac{50-x}{23}+\frac{50-x}{25}+\frac{50-x}{27}+\frac{50-x}{29}=0\)
\(\Leftrightarrow\left(50-x\right)\left(\frac{1}{21}+\frac{1}{23}+\frac{1}{25}+\frac{1}{27}+\frac{1}{29}\right)=0\)
Do \(\frac{1}{21}+\frac{1}{23}+\frac{1}{25}+\frac{1}{27}+\frac{1}{29}>0\) nên 50 - x = 0 hay x = 50.
pt<=>29-x/21+1+27-x/23+1+...=0
<=>50-x/21+50-x/23+50-x/25+50-x/27+50-x/29=0
<=>(50-x).(1/21+1/23+1/25+1/27+1/29)=0
Do 1/21+1/23+1/25+1/27+1/29>0 nên 50-x=0 hay x=50
Giải phương trình
a,\(\frac{x-5}{100}+\frac{x-4}{101}+\frac{x-3}{102}=\frac{x-100}{5}+\frac{x-101}{4}+\frac{x-102}{3}\)
b, \(\frac{29-x}{21}+\frac{27-x}{23}+\frac{25-x}{25}+\frac{23-x}{27}+\frac{21-x}{29}=-5\)
a) \(\frac{x-5}{100}+\frac{x-4}{101}+\frac{x-3}{102}=\frac{x-100}{5}+\frac{x-101}{4}+\frac{x-102}{3}\)
\(\Leftrightarrow\left(\frac{x-5}{100}-1\right)+\left(\frac{x-4}{101}-1\right)+\left(\frac{x-3}{102}-1\right)=\left(\frac{x-100}{5}-1\right)+\left(\frac{x-101}{4}-1\right)+\left(\frac{x-102}{3}-1\right)\)
\(\Leftrightarrow\frac{x-105}{100}+\frac{x-105}{101}+\frac{x-105}{102}=\frac{x-105}{5}+\frac{x-105}{4}+\frac{x-105}{3}\)
\(\Leftrightarrow\left(x-105\right)\left(\frac{1}{100}+\frac{1}{101}+\frac{1}{102}-\frac{1}{5}-\frac{1}{4}-\frac{1}{3}\right)=0\)
\(\Leftrightarrow x=105\)
b) \(\frac{29-x}{21}+\frac{27-x}{23}+\frac{25-x}{25}+\frac{23-x}{27}+\frac{21-x}{29}=-5\)
\(\Leftrightarrow\left(\frac{29-x}{21}+1\right)+\left(\frac{27-x}{23}+1\right)+\left(\frac{25-x}{25}+1\right)+\left(\frac{23-x}{27}+1\right)+\left(\frac{21-x}{29}+1\right)=0\)
\(\Leftrightarrow\frac{50-x}{21}+\frac{50-x}{23}+\frac{50-x}{25}+\frac{50-x}{27}+\frac{50-x}{29}=0\)
\(\Leftrightarrow\left(50-x\right)\left(\frac{1}{21}+\frac{1}{23}+\frac{1}{25}+\frac{1}{27}+\frac{1}{29}\right)=0\)
\(\Leftrightarrow x=50\)
Bài3. Giải phương trình
a/ \(\frac{x-5}{100}+\frac{x-4}{101}+\frac{x-3}{102}=\frac{x-100}{5}+\frac{x-101}{4}+\frac{102}{3}\)
b/ \(\frac{29-x}{21}+\frac{27-x}{23}+\frac{25-x}{25}+\frac{23-x}{27}+\frac{21-x}{29}=-5\)
a. \(\frac{x-5}{100}+\frac{x-4}{101}+\frac{x-3}{102}=\frac{x-100}{5}+\frac{x-101}{4}+\frac{x-102}{3}\)
\(\Rightarrow\frac{x-5}{100}-1+\frac{x-4}{101}-1+\frac{x-3}{102}-1=\frac{x-100}{5}-1+\frac{x-101}{4}-1+\frac{x-102}{3}-1\)
\(\Rightarrow\frac{x-105}{100}+\frac{x-105}{101}+\frac{x-105}{102}-\frac{x-105}{5}-\frac{x-105}{4}-\frac{x-105}{3}=0\)
\(\Rightarrow\left(x-105\right)\left(\frac{1}{100}+\frac{1}{101}+\frac{1}{102}-\frac{1}{5}-\frac{1}{4}-\frac{1}{3}\right)=0\)
\(\Rightarrow x-105=0\left(\frac{1}{100}+\frac{1}{101}+\frac{1}{102}-\frac{1}{5}-\frac{1}{4}-\frac{1}{3}\ne0\right)\)
\(\Rightarrow x=105\)
b. \(\frac{29-x}{21}+\frac{27-x}{23}+\frac{25-x}{25}+\frac{23-x}{27}+\frac{21-x}{29}=-5\)
\(\Rightarrow\frac{29-x}{21}+1+\frac{27-x}{23}+1+\frac{25-x}{25}+1+\frac{23-x}{27}+1+\frac{21-x}{29}+1=0\)
\(\Rightarrow\frac{50-x}{21}+\frac{50-x}{23}+\frac{50-x}{25}+\frac{50-x}{27}+\frac{50-x}{29}=0\)
\(\Rightarrow\left(50-x\right)\left(\frac{1}{21}+\frac{1}{23}+\frac{1}{25}+\frac{1}{27}+\frac{1}{29}\right)=0\)
\(\Rightarrow50-x=0\left(\frac{1}{21}+\frac{1}{23}+\frac{1}{25}+\frac{1}{27}+\frac{1}{29}\ne0\right)\)
\(\Rightarrow x=50\)
a) \(\frac{x-5}{100}+\frac{x-4}{101}+\frac{x-3}{102}=\frac{x-100}{5}+\frac{x-101}{4}+\frac{x-102}{3}\)
\(\Leftrightarrow\frac{x-5}{100}-1+\frac{x-4}{101}-1+\frac{x-3}{102}-1=\frac{x-100}{5}-1+\frac{x-101}{4}-1+\frac{x-102}{3}-1\)
\(\Leftrightarrow\frac{x-105}{100}+\frac{x-105}{101}+\frac{x-105}{102}=\frac{x-105}{5}+\frac{x-105}{4}+\frac{x-105}{3}\)
\(\Leftrightarrow\left(x-105\right)\left(\frac{1}{100}+\frac{1}{101}+\frac{1}{102}-\frac{1}{5}-\frac{1}{4}-\frac{1}{3}\right)=0\)
Dễ dàng thấy nhân tử thứ hai luôn bé thua 0 nên \(x-105=0\)\(\Leftrightarrow x=105\)
b) Kĩ thuật làm tương tự câu a cộng mỗi phân số VT với 1 thì VP=0 và ta có nhân tử chung 50-x
tính
\(\frac{-1}{3}+\frac{0,2-0,3+\frac{5}{11}}{-0,3+\frac{9}{16}-\frac{15}{12}}\)
tìm x :
\(\frac{29-x}{21}+\frac{27-x}{23}+\frac{25-x}{25}+\frac{23-x}{27}+\frac{21-x}{29}=0\)
giúp mình nhé thanks
29-x/21 + 27-x/23 + 25-x/25 + 23-x/27 + 21-x/29 = -5
1 + 29-x/21 + 1 + 27-x/23 + 1 + 25-x/25 + 1 + 23-x/27 + 1 + 21-x/29 = 0
50-x/21 + 50-x/23 + 50-x/25 + 50-x/27 + 50-x/29 = 0
(50-x) (1/21 + 1/23 + 1/25 + 1/27 + 1/29) = 0
Vì: 1/21 + 1/23 + 1/25 + 1/27 + 1/2 > 0
=> 50 - x = 0
x = 50
Vậy x = 50
\(\frac{-1}{3}+\frac{0,2-0,3+\frac{5}{11}}{-0,3+\frac{9}{16}-\frac{15}{12}}\)
\(=\frac{-1}{3}+\frac{\frac{2}{10}-\frac{3}{10}+\frac{5}{11}}{\frac{-3}{10}+\frac{9}{16}-\frac{15}{12}}\)
\(=\frac{-1}{3}+\frac{\frac{39}{110}}{\frac{-79}{80}}\)
\(=\frac{-1}{3}-\frac{312}{869}\)
\(=\frac{-1805}{2607}\)
Giải PT\(\frac{x-29}{1986}+\frac{x-27}{1988}+\frac{x-25}{1990}+\frac{x-23}{1992}+\frac{x-21}{1994}+\frac{x-19}{1996}=\frac{x-1986}{29}+\frac{x-1988}{27}+\frac{x-1990}{25}+\frac{x-1992}{23}+\frac{x-1994}{21}+\frac{x-1996}{19}\)
pạn -1 vào mỗi phân số là xong. Rùi ra x\(\frac{x-2015}{1986}\)+\(\frac{x-2015}{1988}\)+ \(\frac{x-2015}{1990}\)+...+\(\frac{x-2015}{x1996}\)-\(\frac{x-2015}{29}\)-\(\frac{x-2015}{27}\)-...\(\frac{x-2015}{19}\)=0
<=>(x-2015)(\(\frac{1}{1986}\)+\(\frac{1}{1988}\)+... -\(\frac{1}{19}\))=0...(mà \(\frac{1}{1986}\)+...- \(\frac{1}{19}\) khác 0)
=>x-2015=0
<=> x=2015
\(\text{Giải phương trình sau(biến đổi đặc biệt):}\)
\(E=\frac{x-29}{1970}+\frac{x-27}{1972}+\frac{x-25}{1974}+\frac{x-23}{1976}+\frac{x-21}{1978}+\frac{x-19}{1980}=\frac{x-1970}{29}+\frac{x-1972}{27}+\frac{x-1974}{25}+\frac{x-1976}{23}+\frac{x-1978}{21}+\frac{x-1980}{19}\)
E = ( x - 29 ) / 1970 + ( x - 27 ) / 1972 + ( x - 25 ) / 1974 + ( x - 23 ) / 1976 + ( x - 21 ) / 1978 + ( x - 19 ) / 1980 = ( x - 1970 ) / 29 + ( x - 1972 ) / 27 + ( x - 1974 ) / 25 + ( x - 1976 ) / 23 + ( x - 1978 ) / 21 + ( x - 1980 ) / 19
( Trừ từng số hạng cho 1 ra như sau )
E = (x - 1999)/ 1970 + ( x - 1999 ) / 1972 + ( x - 1999) / 1974 + ( x - 1999)/ 1976 + ( x -1999) / 1978 + ( x - 1999)/ 1980 = ( x - 1999)/29 + ( x - 1999) / 27 + ( x - 1999 ) / 25 + ( x - 1999) / 23 + ( x - 1999)/21 + ( x - 1999) / 19
< = > ( x - 1999 ) / 1970 + ( x - 1999 ) / 1972 + ( x - 1999 ) / 1974 + ( x - 1999) / 1976 + ( x - 1999) / 1978 + ( x - 1999) / 1980 - ( x - 1999) / 29 - ( x - 1999)/ 27 - ( 1 - 1999) / 25 - ( x-1999) / 23 - ( x - 1999) / 21 - ( x - 1999) / 19 = 0 ( chuyển vế )
< = > ( x - 1999 ) ( 1/1970 + 1/ 1972 + 1/1974 + 1/1976 + 1/1978 + 1/1980 - 1/29 - 1/27 - 1/25 - 1/23 - 1/21 - 1/19) = 0
Vì ( 1/1970 + 1/1972 + 1/1974 + 1/1976 + 1/1978 + 1/1980 - 1/29 -1/27 - 1/25 - 123 - 1/21 - 1/19 ) khác 0 nên để đẳng thức bằng 0 thì bắt buộc x - 1999 = 0
< = > x = 0 + 1999 = 1999
Vậy tập nghiệm của phương trình là S = { 1999 }
tìm x
\(\frac{29-x}{21}\)+\(\frac{27-x}{23}\)+\(\frac{25-x}{25}\)+\(\frac{23-x}{27}\)-\(\frac{166-x}{29}\)=0
các bn lm giúp mk nha!!!!!
mk đang cần gấp!!!!!!!!
giải phương trình(tiếp)
\(\frac{5}{3x+2}=2x-1\)
\(\frac{x-45}{55}+\frac{x-47}{53}=\frac{x-55}{45}+\frac{x-53}{47}\)
\(\frac{2-x}{2002}-1=\frac{1-x}{2003}-\frac{x}{2004}\)
\(\frac{x^2-10x-29}{1971}+\frac{x^2-10x-27}{1973}=\frac{x^2-10x-1971}{29}+\frac{x^2-10x-1973}{27}\)
\(\frac{201-x}{99}+\frac{203-x}{97}=\frac{205-x}{95}+3\)
\(\frac{2x-\frac{4-3x}{5}}{15}=\frac{7x-\frac{x-3}{2}}{5}-x+1\)
\(\frac{\frac{1}{2}+a}{a-\frac{1}{2}}-\frac{\frac{1}{2}-a}{a+\frac{1}{2}}=\frac{a\left(3a+1\right)}{a^2-\left(\frac{1}{2}\right)^2}\)
\(\frac{x-29}{1970}+\frac{x-27}{1972}+\frac{x-25}{1974}+\frac{x-23}{1976}+\frac{x-21}{1978}+\frac{x-19}{1980}=\frac{x-1970}{29}+\frac{x-1972}{27}+\frac{x-1974}{25}+\frac{x-1976}{23}+\frac{x-1978}{21}+\frac{x-1978}{21}+\frac{x-1980}{19}\)