Những câu hỏi liên quan
Hoàng Quốc Tuấn
Xem chi tiết
Võ Nguyễn Ánh Mai
10 tháng 2 2020 lúc 8:27

Ở đây ít người lớp 9 lắm

Bình luận (0)
 Khách vãng lai đã xóa
tth_new
10 tháng 2 2020 lúc 8:29

Từ đề bài suy ra \(0< a,b,c< \sqrt{3}\). Khi đó:  \(M-9=\Sigma_{cyc}\frac{\left(2-a\right)\left(a-1\right)^2}{2a}\ge0\)

Bình luận (0)
 Khách vãng lai đã xóa
Lê Thế Minh
Xem chi tiết

\(Ta có: \frac{{a^5 }}{{b^3 + c^2 }} + \frac{{\sqrt {a(b^3 + c^2 )} }}{{2\sqrt 2 }} + \frac{{\sqrt {a(b^3 + c^2 )} }}{{2\sqrt 2 }}\mathop \ge \frac{{3a^2 }}{2}\)

\(\Rightarrow \frac{{a^5 }}{{b^3 + c^2 }} \ge \frac{{3a^2 }}{2} - (\frac{{\sqrt {a(b^3 + c^2 )} }}{{2\sqrt 2 }} + \frac{{\sqrt {a(b^3 + c^2 )} }}{{2\sqrt 2 }})\)

\(Do đó: \frac{{a^5 }}{{b^3 + c^2 }} \ge \frac{{3a^2 }}{2} - \frac{{\sqrt {2a(b^3 + c^2 )} }}{2}\mathop \ge \frac{{3a^2 }}{2} - \frac{{2a + b^3 + c^2 }}{4}\)

\(CMTT \frac{{b^5 }}{{c^3 + a^2 }}\mathop \ge \frac{{3b^2 }}{2} - \frac{{2b + c^3 + a^2 }}{4}\)\(\frac{{c^5}}{{a^3+b^2}}\mathop \ge \frac{{3c^2 }}{2} - \frac{{2c + a^3 + b^2 }}{4}\)

\(M \ge \frac{{3(a^2 + b^2 + c^2 )}}{2} + a^4 + b^4 + c^4 - \frac{{2(a + b + c) + (a^2 + b^2 + c^2 ) + (a^3 + b^3 + c^3 )}}{4}\)

\(M \ge \frac{9}{2} + a^4 + b^4 + c^4 - \frac{{2(a + b + c) + (a^2 + b^2 + c^2 ) + (a^3 + b^3 + c^3 )}}{4}\)

Áp dụng Bunhiacoopski ta có:

\(\sqrt {(a^4+b^4+c^4 )(a^2+b^2+c^2)}=\sqrt {(a^4 +b^4+ c^4 ).3}\ge a^3+b^3+c^3 \)

\(\sqrt {(a^4 + b^4 + c^4 )(1 + 1 + 1)} = \sqrt {(a^2 + b^2 + c^2 ).3} \ge a^2 + b^2 + c^2 \Leftrightarrow a^4 + b^4 + c^4 \ge 3\)

Ta có: \(3 = a^2 + b^2 + c^2 \ge \frac{{(a + b + c)^2 }}{3} \Leftrightarrow a^2 + b^2 + c^2 \ge a + b + c\) 

\(Đặt t=x^4+y^4+z^4 (t \ge 3) cần CM để trở thành S \ge \frac{{4t - 9 - \sqrt {3t} }}{4}\ge 0\)

\(Ta có: S\ge \frac{{4t - 9 - \sqrt {3t} }}{4} = \frac{{3(t - 3) + \sqrt t (\sqrt t - \sqrt 3 )}}{4} \ge 0 \)
\(Do đó: M\geq \frac{9}{2}\)

Bình luận (0)

Phần đầu mình thiếu nha

\(\frac{a^5}{b^3+c^2}+\frac{\sqrt{a\left(b^3+c^2\right)}}{2\sqrt{2}}+\frac{\sqrt{a\left(b^3+c^2\right)}}{2\sqrt{2}}\ge\frac{3a^2}{2}\)

=> \(\frac{a^5}{b^3+c^2}\ge\frac{3a^2}{2}-\left(\frac{\sqrt{a\left(b^3+c^2\right)}}{2\sqrt{2}}+\frac{\sqrt{a\left(b^3+c^2\right)}}{2\sqrt{2}}\right)\)

Do đó \(\frac{a^5}{b^3+c^2}\ge\frac{3a^2}{2}-\frac{\sqrt{2a\left(b^3+c^2\right)}}{2}\ge\frac{3a^2}{2}-\frac{\left(2a+b^3+b^2\right)}{4}\)

CMTT \(\frac{b^5}{c^3+a^2}\ge\frac{3b^2}{2}-\frac{\left(2b+c^3+a^2\right)}{4},\frac{c^5}{a^3+b^2}\ge\frac{3c^2}{2}-\frac{\left(2c+a^3+b^2\right)}{4}\)

Bình luận (0)
alibaba nguyễn
7 tháng 12 2017 lúc 9:24

Ta có:

\(\dfrac{a^5}{b^3+c^2}+\dfrac{b^3+c^2}{4}+\dfrac{a}{2}\ge\dfrac{3a^2}{2}\)

\(\Rightarrow M\ge\dfrac{3}{2}\left(a^2+b^2+c^2\right)+a^4+b^4+c^4-\dfrac{1}{4}\left(a^2+b^2+c^2+a^3+b^3+c^3\right)-\dfrac{1}{2}\left(a+b+c\right)\)

\(\ge\dfrac{5}{4}\left(a^2+b^2+c^2\right)+\dfrac{4}{3}\left(a^3+b^3+c^3\right)-1-\dfrac{1}{4}\left(a^3+b^3+c^3\right)-\dfrac{1}{4}\left(a^2+b^2+c^2\right)-\dfrac{3}{4}\)

\(=\left(a^2+b^2+c^2\right)+\dfrac{13}{12}\left(a^3+b^3+c^3\right)-\dfrac{7}{4}\)

\(=\dfrac{5}{4}+\dfrac{13}{12}\left(a^3+b^3+c^3\right)\)

\(\ge\dfrac{5}{4}+\dfrac{3}{2}.\dfrac{13}{12}\left(a^2+b^2+c^2-1\right)=\dfrac{9}{2}\)

Dấu = xảy ra khi \(a=b=c=1\)      

Bình luận (0)
Quyết Tâm Chiến Thắng
Xem chi tiết
Nyatmax
11 tháng 9 2019 lúc 12:05

1a

\(A=\frac{3}{2ab}+\frac{1}{2ab}+\frac{1}{a^2+b^2}+\frac{a^4+b^4}{2}\ge\frac{6}{\left(a+b\right)^2}+\frac{4}{\left(a+b\right)^2}+\frac{\frac{\left(a^2+b^2\right)^2}{2}}{2}\)

\(\ge10+\frac{\left[\frac{\left(a+b\right)^2}{2}\right]^2}{4}=10+\frac{1}{16}=\frac{161}{16}\)

Dau '=' xay ra khi \(a=b=\frac{1}{2}\)

Vay \(A_{min}=\frac{161}{16}\)

Bình luận (0)
Nyatmax
11 tháng 9 2019 lúc 12:15

1b.\(B=\frac{1}{2ab}+\frac{1}{2ab}+\frac{1}{a^2+b^2}+\frac{a^8+b^8}{4}\ge\frac{2}{\left(a+b\right)^2}+\frac{4}{\left(a+b\right)^2}+\frac{\frac{\left(a^4+b^4\right)^2}{2}}{4}\)

\(\ge6+\frac{\left[\frac{\left(a^2+b^2\right)^2}{2}\right]^2}{8}\ge6+\frac{\left[\frac{\left(a+b\right)^2}{2}\right]^2}{32}=6+\frac{1}{128}=\frac{769}{128}\)

Dau '=' xay ra khi \(a=b=\frac{1}{2}\)

Vay \(B_{min}=\frac{769}{128}\)khi \(a=b=\frac{1}{2}\)

Bình luận (0)
tth_new
11 tháng 9 2019 lúc 18:20

Bài 2 Dùng Cauchy-Schwarz dạng Engel là ra:D

Bài 3:Đừng vội dùng Cauchy-Schwarz dạng Engel ngay kẻo bị phức tạp:v Thay vào đó hãy khai triển nó ra:

\(A=x^2+y^2+2\left(\frac{x}{y}+\frac{y}{x}\right)+\frac{1}{x^2}+\frac{1}{y^2}\)

\(\ge4+2.2+\frac{4}{x^2+y^2}=4+4+1=9\)

Đẳng thức xảy ra khi \(x=y=\sqrt{2}\)

Bài 4: Dùng Cauchy or Bunhiacopxki là ok!

Bình luận (0)
Lê Song Phương
Xem chi tiết
Phan Tuấn Anh
21 tháng 2 2022 lúc 19:08

43 nha 

Sai thì thông cảm, đúng thì k đúng 

@@@@@@@@ 

HT

Bình luận (0)
 Khách vãng lai đã xóa
Lê Min Hy
21 tháng 2 2022 lúc 19:09

43 nha

hok tốt

nhớ tích

Bình luận (0)
 Khách vãng lai đã xóa
Lê Song Phương
21 tháng 2 2022 lúc 19:10

Mình biết \(min_S=\frac{3}{2}\)khi \(a=b=c=1\)rồi nhưng làm sao để ra được là cả một vấn đề.

Bình luận (0)
 Khách vãng lai đã xóa
Hoàng Quốc Tuấn
Xem chi tiết
tth_new
7 tháng 1 2020 lúc 18:36

4/ Xét hiệu: \(P-2\left(ab+7bc+ca\right)\)

\(=5a^2+11b^2+5c^2-2\left(ab+7bc+ca\right)\)

\(=\frac{\left(5a-b-c\right)^2+6\left(3b-2c\right)^2}{5}\ge0\)

Vì vậy: \(P\ge2\left(ab+7bc+ca\right)=2.188=376\)

Đẳng thức xảy ra khi ...(anh giải nốt ạ)

Bình luận (0)
 Khách vãng lai đã xóa
tth_new
7 tháng 1 2020 lúc 20:28

@Cool Kid:

Bài 5: Bản chất của bài này là tìm k (nhỏ nhất hay lớn nhất gì đó, mình nhớ không rõ nhưng đại khái là chọn k) sao cho: \(5a^2+11b^2+5c^2\ge k\left(ab+7bc+ca\right)\)

Rồi đó, chuyển vế, viết lại dưới dạng tam thức bậc 2 biến a, b, c gì cũng được rồi tự làm đi:)

Bình luận (0)
 Khách vãng lai đã xóa
tth_new
7 tháng 1 2020 lúc 20:29

í lộn, bài 4:v Bài 3 thấy quen quen, đợi chút em lục lại@Hoàng Quốc Tuấn 

Bình luận (0)
 Khách vãng lai đã xóa
Hiếu Lê
Xem chi tiết
Lê Thị Hải Anh
Xem chi tiết
alibaba nguyễn
12 tháng 11 2018 lúc 14:27

Gọi \(S=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+ab+c^2}+\frac{a^3}{c^2+ab+a^2}\)

Dễ thấy \(P-S=0\)

\(\Rightarrow2P=\frac{a^3+b^3}{a^2+ab+b^2}+\frac{b^3+c^3}{b^2+ab+c^2}+\frac{c^3+a^3}{c^2+ab+a^2}\)

Ta chứng minh: 

\(\frac{a^3+b^3}{a^2+ab+b^2}\ge\frac{a+b}{3}\)

\(\Leftrightarrow\left(a+b\right)\left(a-b\right)^2\ge0\)(đúng)

\(\Rightarrow2P\ge\frac{a+b}{3}+\frac{b+c}{3}+\frac{c+a}{3}=\frac{2\left(a+b+c\right)}{3}=2\)

\(\Rightarrow P\ge1\)

Bình luận (0)
phulonsua
5 tháng 9 2021 lúc 18:08

P-S=0 ?? =))

Bình luận (0)
 Khách vãng lai đã xóa
Tạ Duy Phương
Xem chi tiết
Tạ Duy Phương
Xem chi tiết
Ngô Ngọc Khánh
1 tháng 1 2016 lúc 22:25

Làm được bài này chưa. @@@

Bình luận (0)
Tạ Duy Phương
1 tháng 1 2016 lúc 22:26

Chưa, cậu làm được chưa?

Bình luận (0)
Ngô Ngọc Khánh
1 tháng 1 2016 lúc 22:27

Vừa nãy , em tớ là giảng viên đại học trong Miền Nam ra chơi cũng chào thua.

Bình luận (0)