Cho a/b=c/d.Chứng minh rằng:a^2-b^2/c^2-d^2=ab/cd
Cho a,b,c,d là các số dương thỏa mãn a^2 + b^2=1 và a^4/c+b^4/d=1/c+d.Chứng minh rằng:a^2/c+d/b^2>=2
Cho a,b,c,d là các số dương thỏa mãn a^2 + b^2=1 và a^4/c+b^4/d=1/c+d.Chứng minh rằng:a^2/c+d/b^2>=2
Cho tỉ lệ thức: a/b=c/d.Chứng minh
a)ab/cd=(a-b)^2/(cd)^2
b)(a+b/c+d)^2=a^2+b^2/c^2+d^2
c)7a^2+3ab/11a^2-8b^2=7c^2+3cd/11c^2-8d^2
Cho tỉ lệ thức:a/b=c/d.Chứng minh rằng :\(\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)và \(\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)
*\(\frac{a}{b}=\frac{c}{d}\)=> \(\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2-c^2}{b^2-d^2}=\frac{a}{b}.\left(\frac{a}{b}\right)=\frac{ac}{bd}\)(đpcm)
* \(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)=> \(\frac{a^2}{b^2}=\frac{c^2}{d^2}=\left(\frac{a+c}{b+d}\right)^2\)(1)
Ta lại có \(\frac{a}{b}=\frac{c}{d}\)=>\(\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}\)(2)
Từ (1),(2) => đpcm
Cho a/b=c/d.Chứng minh
a, 5a+3b/5c+3d=5a-3b/5c-3b
b,(a-b)^2/(c-d)^2=ab/cd
c,a^3-b^3/c^3-d^3=(a+b/c+d)^3
\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)
cho a/b=c/d, chứng minh rằng:
a. ab/cd = a^2-b^2/ c^2 -d^2
b. 7a-4b/3a+5b=7c-4d/3c+5d
c. ac/bd= a^2+c^2/b^2+d^2= (c-a)^2/(d-b)^2
d. a^3+b^3/c^3+d^3= (a+b)^3/(c+d)^3 với (a/b =c/d khác 1)
Chứng minh a/a-b=c/c-d biết a/b=c/dCho ab=cd chứng minh rằng:a) aa−b =cc−db) ab=a+cb+dc)a3a+b=c3c+bd) a.cb.c=a2+c2b2+d2e) a.bc.d=a2−b2c2−d2f) a.bc.d=(a−b)2(c−d)2
Cho |ad|=|bc|, cd khác 0, c khác +_ d.Chứng minh rằng
\(\left|\frac{a^2-b^2}{c^2-d^2}\right|=\left|\frac{ab}{cd}\right|\)
Cho tỉ lệ thức a/b=c/d.Chứng minh
a)3a+5b/3a-5b=3c+5d/3c-5d
b) 2a + 3b/ 2a - 3b= 2c+3d/2c-3d
c)ab/cd=a^2-b^2/c^2-d^2