Đặt \(\frac{a}{b}=\frac{c}{d}=k\Leftrightarrow a=bk;c=dk\)
Thay a = bk, c = dk vào \(\frac{a^2-b^2}{c^2-d^2}\) và \(\frac{ab}{cd}\), ta có:
\(\frac{a^2-b^2}{c^2-d^2}=\frac{\left(bk\right)^2-b^2}{\left(dk\right)^2-d^2}=\frac{b^2k^2-b^2}{d^2k^2-d^2}=\frac{b^2\left(k^2-1\right)}{d^2\left(k^2-1\right)}=\frac{b^2}{d^2}\)
\(\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2.k}{d^2.k}=\frac{b^2}{d^2}\)
\(\Rightarrow\frac{a^2-b^2}{c^2-d^2}=\frac{ab}{cd}\left(đpcm\right)\)