A=2/3^2+3/3^3+4/3^4+...+50/3^50
so sanh a voi 1
So sanh A voi 1:
A=1/2*2 + 1/3*3 + 1/4*4 + .....+1/2011*2011
So sanh B voi 3/4:
B=1/2*2 + 1/3*3 +1/4*4 + ......+1/2011*2011
so sanh A= 1/2^2 + 1/ 3^2 +1/4^2+...+ 1/300^2 voi 3/4
cho a = 1/2*2+1/3*3+1/4*4+....+1/2017*2017
so sanh a voi 1
\(A=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+....+\frac{1}{2017.2017}\)
Ta có :
\(\frac{1}{2.2}< \frac{1}{1.2}\)
\(\frac{1}{3.3}< \frac{1}{2.3}\)
\(\frac{1}{4.4}< \frac{1}{3.4}\)
........
\(\frac{1}{2017.2017}< \frac{1}{2016.2017}\)
=> \(A=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+....+\frac{1}{2017.2017}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{2016.2017}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{2016}-\frac{1}{2017}\)
\(=1-\frac{1}{2017}< 1\)
=> A < 1
\(a=\frac{1}{2.2}+\frac{1}{3.3}+........+\frac{1}{2017.2017}\)
\(a< \frac{1}{1.2}+\frac{1}{2.3}+......+\frac{1}{2016.2017}\)
\(a< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+......+\frac{1}{2016}-\frac{1}{2017}\)
\(a< 1-\frac{1}{2017}\)
Do \(a< 1-\frac{1}{2017}\)
\(\Rightarrow a< 1\)
A=1/1*2+1/2*3+1/3*4+......+1/99*100 so sanh voi 1
A = 1/1×2 + 1/2×3 + 1/3×4 + .. + 1/99×100
A = 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/99 - 1/100
A = 1 - 1/100 < 1
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(A=1\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(A=1-\frac{1}{100}< 1\)
=> ĐPCM
Ta có:
A = 1/1 x 2 + 1/2 x 3 + 1/3 x 4 + ..... + 1/99 x 100
A = 1- 1/2 + 1/2 - 1 /3 + 1/3 - 1/4 + ..... + 1/99 - 1/100
A = 1 - 1/100 < 1
nha bn
chúc bn học giỏi
so sanh A va B voi 0
A = 1. ( - 2 ) . 3 . ( - 4 ) ..... . 99 . ( -100 )
B = 1 . ( - 2 ) . 3 . ( - 4 ) . ... . (-98) . 99
A có 50 thừa số âm
=> A > 0
b) CÓ 49 thừa số âm
=> B < 0
A có 50 thừa số âm
=> A > 0
B có 49 thừa số âm
=> B < 0
tick nha
so sanh A va B voi 0
A = 1 . ( - 2 ) . 3 .( - 4 ) . .... . 99 . ( - 100 )
B = 1 . ( - 2 ) . 3. ( - 4 ) . .... . ( - 98 ) . 99
Cho A = 1/2+2/22+3/23+4/24+......+100/2100. So sanh A voi 2
A=1/4+1/42+1/43+.....+1/499
a) Rut gon A
b) So sanh A voi 1/3
4A=1+1/4+1/42+......+1/498
4A - A = ( 1+1/4+1/42+..........+1/498) - ( 1/4+1/42+1/43+.......+1/499)
3A= 1-1/499
A= 1/3 - 1/499 : 3
Mà 1/499 : 3 > 0 => 1/3 - 1/499 : 3 < 1/3
Hay A < 1/3
a/ Rút gọn:
\(A=\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+....+\frac{1}{4^{99}}.\)
=> \(4A=1+\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+....+\frac{1}{4^{98}}\)
=> \(4A=1+\left(\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+....+\frac{1}{4^{98}}+\frac{1}{4^{99}}\right)-\frac{1}{4^{99}}\)
<=> \(4A=1+A-\frac{1}{4^{99}}\)
=> \(3A=1-\frac{1}{4^{99}}\)
=> \(A=\frac{1}{3}-\frac{1}{3.4^{99}}\)
b/ Ta có: \(A=\frac{1}{3}-\frac{1}{3.4^{99}}< \frac{1}{3}\)
Ta có:
A=1/4+1/42+…+1/499
4A=4.(1/4+1/42+…+1/499)
4A=1+1/4+…+1/498
4A-A=(1+1/4+…+1/498)- (1/4+1/42+…+1/499)
3A=1-1/499
A=1/3-1/(499.3)
b)Vì A=1/3-1/(499.3) nên A<1/3 (do 1/499.3>0)
S = 1+3+3^2+3^3+3^4+ ....+3^20
SO SANH S VOI 1/2 . 3 ^ 31
Ta có: \(S=1+3+3^2+...+3^{20}\)
\(\Rightarrow3S=3+3^2+3^3+...+3^{21}\)
\(\Rightarrow3S-S=\left(3+3^2+3^3+...+3^{21}\right)-\left(1+3+3^2+...+3^{20}\right)\)
\(\Rightarrow2S=3^{21}-1\)
\(\Rightarrow S=\left(3^{21}-1\right).\frac{1}{2}\)
\(\Rightarrow S=3^{21}.\frac{1}{2}-\frac{1}{2}\)
Vì \(3^{21}.\frac{1}{2}-\frac{1}{2}< 3^{21}.\frac{1}{2}\) nên \(A< \frac{1}{2}.3^{21}\)
Vậy \(A< \frac{1}{2}.3^{21}\)