Tính GTBT sau:
\(\frac{2^{12}.5^7+4^6.25^3}{8^5.25^3+\left(2^2.5\right)^6^{ }}\)
1.Tinh:
a)\(\frac{2^{12}.5^7+4^6.25^3}{8^5.25^3+\left(2^2.5\right)^6}\)
\(\frac{2^{12}\cdot5^7+4^6\cdot25^3}{8^5\cdot25^3+\left(2^2\cdot5\right)^6}\)
\(=\frac{2^{12}.5^7+2^{12}\cdot5^6}{2^{15}\cdot5^6+2^{12}\cdot5^6}\)
\(=\frac{2^{12}\cdot5^6\cdot\left(1\cdot5+1\right)}{2^{12}\cdot5^6\cdot\left(2^3\cdot1+1\right)}\)
\(=\frac{6}{9}\)
\(=\frac{2}{3}\)
\(\frac{2^{12}.5^7+4^6.25^3}{8^5.25^3+\left(2^2.5\right)^6}=\frac{2^{12}.5^7+\left(2^2\right)^6.\left(5^2\right)^3}{\left(2^3\right)^5.\left(5^2\right)^3+\left(2^2\right)^6.5^6}=\frac{2^{12}.5^7+2^{12}.5^6}{2^{15}.5^6+2^{12}.5^6}\)
\(=\frac{2^{12}.5^6.\left(5+1\right)}{2^{12}.5^6.\left(2^3+1\right)}=\frac{6}{9}=\frac{2}{3}\)
bài 6: tính :
\(\dfrac{10^9.\left(-81\right)^{10}}{\left(-8\right)^4.25^5.9^{10}}\)
b,\(\dfrac{9^4.\left(-4\right)^5.25^3}{8^3,\left(-27\right)^2.5^7}\)
c,\(\dfrac{3^{186}.\left(-25\right)^{50}}{\left(-15\right)^{100}.27^{29}}\)
a: \(=\dfrac{2^9\cdot5^9\cdot3^{40}}{2^{12}\cdot5^{10}\cdot3^{20}}=\dfrac{3^{20}}{5\cdot2^3}\)
b: \(=\dfrac{-3^8\cdot2^{10}\cdot5^6}{2^9\cdot\left(-1\right)\cdot3^6\cdot5^7}=\dfrac{-2}{5}\cdot3^2=-\dfrac{18}{5}\)
c: \(=\dfrac{3^{186}\cdot5^{100}}{5^{100}\cdot3^{187}}=\dfrac{1}{3}\)
\(\frac{\left(-7\right)^n}{\left(-7\right)^{n-1}}\)(n\(\ge1\)) Tính GTBT
Bài 2 Tính GTBT theo cách hợp lí nếu có thể
c) \(\frac{5^3\times3^3}{5^3\times0,5+125\times2,5}\)d)\(\frac{5\times7^1+7^3\times25}{7^5125-7^3\times50}\)e)\(\frac{8^5\times\left(-5\right)^8+\left(-2\right)^5\times10^9}{2^{16}\times5^7+20^8}\)
h)\(\frac{\left(-0,25\right)^{-5}\times9^4\times\left(-2\right)^{-3}-2^{-2}\times6^3}{2^9\times3^6+6^6\times40}\)
Bài 3 Chứng tỏ rằng
a)
Tính giá trị của các biểu thức sau rồi phân tích kết quả ra thừa số nguyên tố:
a. \(160 - \left( {{2^3}{{.5}^2} - 6.25} \right)\);
b. \(37.3 + 225:{15^2}\)
c. \(5871:103 - 64:{2^5}\)
d. \(\left( {1 + 2 + 3 + 4 + 5 + 6 + 7 + 8} \right){.5^2} - 850:2\)
a. \(160 - \left( {{2^3}{{.5}^2} - 6.25} \right)\)
\(\begin{array}{l} = 160 - \left( {8.25 - 6.25} \right)\\ = 160 - 25.\left( {8 - 6} \right)\\ = 160 - 25.2\\ = 160 - 50\\ = 110\end{array}\)
Ta có: 110 = 2.5.11
b. \(37.3 + 225:{15^2}\)
\(\begin{array}{l} = 37.3 + 225:225\\ = 37.3 + 1\\ = 111 + 1\\ = 112\end{array}\)
Ta có: \(112 = 2^4.7\)
c. \(5871:103 - 64:{2^5}\)
\(\begin{array}{l} = 5871:103 - 64:32\\ = 57 - 2 = 55\end{array}\)
Ta có: 55 = 5. 11
d. \(\left( {1 + 2 + 3 + 4 + 5 + 6 + 7 + 8} \right){.5^2} - 850:2\)
\(\begin{array}{l} = \left[ {\left( {1 + 8} \right) + \left( {2 + 7} \right) + \left( {3 + 6} \right) + \left( {4 + 5} \right)} \right]{.5^2} - 850:2\\ = \left( {9 + 9 + 9 + 9} \right){.5^2} - 850:2\\ = {9.4.5^2} - 850:2\\ = {36.5^2} - 425\\ = {36.5^2} - {5^2}.17\\ = {5^2}.\left( {36 - 17} \right)\\ = {5^2}.19=475\end{array}\)
Ta có: \(475 = 5^2.19\)
a: \(160-\left(2^3\cdot5^2-6\cdot25\right)\)
\(=160-\left(8\cdot25-150\right)\)
\(=160-200+150=10=2\cdot5\)
b: \(=111+225:225=112=2^4\cdot7\)
c: \(=57-64:32=57-2=55=5\cdot11\)
d: \(=\left(9\cdot\dfrac{8}{2}\right)\cdot25-425=36\cdot25-425=25=5^2\)
Tính
a,\(\frac{2^{10}\cdot55+2^{10}\cdot26}{2^8\cdot27}\)
b,120:{300:[150-(2.53-23.25)]}
c,\(\left[\left(\frac{40}{130}-\frac{12}{13}\right)\cdot40\%+0,15\right]:\frac{-5}{52}\)
d,\(\frac{0,8:\left(\frac{4}{5}\cdot1,25\right)}{0,64-\frac{1}{25}}+\frac{\left(1,08-\frac{2}{25}\right):\frac{4}{7}}{\left(6\frac{5}{9}-3\frac{1}{4}\right)\cdot2\frac{2}{17}}+\left(1,2+0,5\right):\frac{1}{5}\)
Tính GTBT:
Q = \(\left(\frac{2}{25}-1,008\right):\frac{4}{7}:\left[\left(3\frac{1}{4}-6\frac{5}{9}\right)-2\frac{2}{17}\right]\)
Làm chi tiết nhé, thanks
Bài 1 hãy tính
1 . A = \(\frac{9^5.5^7}{45^7}\)
2 .B = \(\left(\frac{2^2.2^3}{4^2.16}\right)^{15}\)\(:\left(\frac{2^6}{16^2}\right)^{10}\)
3 . A= \(\frac{-5.7^5+7^4}{7^6.10-2.7^5}\)
4 . B = \(\frac{10^3+5.10^2.5^3}{-13}\)
5 . A = \(\frac{\left(-0,03\right)^7.2^8}{\left(0,6\right)^7}\)
6 . B= \(\frac{3^7.16^3}{12^5.27^2}\)
7 . A = \(\frac{2^3.\left(0,5\right)^3.3^7}{2.\left(,5\right)^4.3^8}\)
8 . B = \(\left(\frac{-1}{3}\right)^3\)\(.\left(\frac{-1}{3}\right)^2\)\(.\left(\frac{-1}{3}\right)\)
Giúp mik nhé . mik cần ngay
\(\left(\frac{-5}{12}+\frac{7}{4}-\frac{3}{8}\right)-\left[4\frac{1}{2}-7\frac{1}{3}\right]-\left(\frac{1}{4}-\frac{5}{2}\right)\)
\(\left[2\frac{1}{4}-5\frac{3}{2}\right]-\left(\frac{3}{10}-1\right)-5\frac{1}{2}+\left(\frac{1}{3}-\frac{5}{6}\right)\)
\(\frac{4}{7}-\left(3\frac{2}{5}-1\frac{1}{2}\right)-\frac{5}{21}+\left[3\frac{1}{2}-4\frac{2}{3}\right]\)
\(\frac{1}{8}-1\frac{3}{4}+\left(\frac{7}{8}-3\frac{7}{2}+\frac{3}{4}\right)-\left[\frac{7}{4}-\frac{5}{8}\right]\)
\(\left(\frac{3}{5}-2\frac{1}{10}+\frac{11}{20}\right)-\left[\frac{-3}{4}+1\frac{7}{2}\right]\)
\(\left[-2\frac{1}{5}-2\frac{2}{3}\right]-\left(\frac{1}{15}-5\frac{1}{2}\right)+\left[\frac{-1}{6}+\frac{1}{3}\right]\)
\(1\frac{1}{8}-\left(\frac{1}{15}-\frac{1}{2}+\frac{-1}{6}\right)+\left[\frac{5}{4}+\frac{3}{2}\right]\)
\(\frac{5}{6}-\left(1\frac{1}{3}-1\frac{1}{2}\right)+\left[\frac{5}{12}-\frac{3}{4}-\frac{1}{6}\right]\)
\(1\frac{1}{4}-\left(\frac{7}{12}-\frac{2}{3}-1\frac{3}{8}\right)+\left[\frac{5}{24}-2\frac{1}{2}\right]-\frac{1}{6}-\left[\frac{-3}{4}\right]\)
\(-2\frac{1}{5}+2\frac{3}{10}-\left(\frac{6}{20}-\left[\frac{2}{8}-1\frac{1}{2}\right]\right)+\left[\frac{7}{20}-1\frac{1}{4}\right]\)
\(-\left[1\frac{2}{3}-3\frac{1}{2}+\frac{1}{4}\right]+\left(\frac{2}{6}-\frac{5}{12}\right)-\left(\frac{1}{3}-\left[\frac{1}{4}-\frac{1}{3}\right]\right)\)
\(-\frac{4}{5}-\left(1\frac{1}{10}-\frac{7}{10}\right)+\left[\frac{3}{4}-1\frac{1}{5}\right]+1\frac{1}{2}\)
\(\frac{3}{21}-\frac{5}{14}+\left[1\frac{1}{3}-5\frac{1}{2}+\frac{5}{14}\right]-\left(\frac{1}{6}-\frac{3}{7}+\frac{1}{3}\right)\)
\(-1\frac{2}{5}+\left[1\frac{3}{10}-\frac{7}{20}-1\frac{1}{4}\right]-\left(\frac{1}{5}-\left[\frac{3}{4}-1\frac{1}{2}\right]\right)\)
\(2\frac{1}{3}-\left(\frac{1}{2}-2\frac{1}{6}+\frac{3}{4}\right)+\left[\frac{5}{12}-1\frac{1}{3}\right]-\frac{7}{8}+3\frac{1}{2}\)
\(2\frac{1}{4}-1\frac{3}{5}-\left(\frac{9}{20}-\frac{7}{10}\right)+\left[1\frac{3}{5}-2\frac{1}{2}\right]+\frac{3}{4}\)
\(\left[\frac{8}{3}-5\frac{1}{4}+\frac{1}{6}\right]-\frac{7}{4}+\frac{-5}{12}-\left(1-1\frac{1}{2}+\frac{1}{3}\right)\)
\(\left(\frac{1}{4}-\left[1\frac{1}{4}-\frac{7}{10}\right]+\frac{1}{2}\right)-2\frac{1}{5}-1\frac{3}{10}+\left[1-\frac{1}{2}\right]\)
TRÌNH BÀY GIÚP MÌNH NHA
rút gon
a,\(\frac{2.5^{22}-9.5^{21}}{25^{10}}\)
b,\(\frac{5\left(3.7^{15}-19.7^{14}\right)}{7^{16}+3.7^{15}}\)
c,\(\frac{\left(\left(-2\right)^2\right)^3.\left(-4\right)^2}{\left(-2\right)^3.\left(-2\right)^2}\)
d,\(\frac{4^6.9^5+6^9.120}{8^4.3^{12}-6^{11}}\)
e,\(2^3+3.\left(\frac{1}{8}\right)^0-\left(\frac{1}{2^2}\right).4+\left[\left(-2\right)^2:\frac{1}{2}\right].8\)
f,\(\frac{\left(\frac{2}{5}\right)^7.5^5+\left(\frac{9}{4}\right)^3:\left(\frac{3}{16}\right)^3}{2^7.5^2+512}\)
Cũng khuya rồi , mình làm câu 1 thôi nhé !
\(\frac{2.5^{22}-9.5^{21}}{25^{10}}=\frac{2.5^{22}-9.5^{21}}{\left(5^2\right)^{10}}\)
\(\frac{5^{21}.\left(2.5-9\right)}{5^{20}}=5.\left(10-9\right)=5\)