cho a-b=7 (a khác -3.5, b khác 3.5) tính D= 3a-b/2a+7
bài 1)tìm số nguyên x dể giá trị của các biểu thức là số nguyên
a)A=2x^2-5x+3/2x-5
b)B=3x^3+9x^2-x-5/x+3
bài 2 )tính giá trị biểu thữc
a)C=5a-b/3a+7 + 3b-2a/2b-7 biết 2a-b=7 a khác 7/-3 và b khác 7/2
b)D=8a+5b/5a-1 + 3a+b/4b+1 biết 3a+5b=-1 a khác 1/5 và b khác -1/4
Tính giá trị của các biểu thức sau
\(\frac{3a-b}{2a+7}\)+\(\frac{3a-b}{2a-7}\) với a-b=7(a khác-3,5 ; b khác 3,5)
P=3a-b/2a+7+3a-b/2a-7 (với a khác -3,5 /b khác 3,5)
tìm giá trị của P khi a-b=7
giúp mik vs
(3a-b)/(2a+7) + (3b-a)/(2b-7) với a-b=7;a khác -3,5;b khác 3,5
\(\frac{3a-b}{2a+7}+\frac{3b-a}{2b-7}=\frac{3a-b}{2a+a-b}+\frac{3b-a}{2b-\left(a-b\right)}=\frac{3a-b}{3a-b}+\frac{3b-a}{3b-a}=2\)
cho : 2a-b=7. với b khác 7/2; b khác -7/3. tính P= \(\frac{5a-b}{3a+7}-\frac{3b-2a}{2b-7}\)
Tính giá trị biểu thức
A= (3a-b)/(2a+7) + (3b-a)/(2b-7) (Với a-b=7 ; a,b khác 3,5)
tính: 4^2.25^2+32.125/2^3.5^2
Tính: B= a-19/b-9 - 2a-b/a+1 với a-b=1 và a khác -1, b khác 9
Tìm x: a/ (x-1)^4=16.(x-1)^2
b/ l2x+1|+|x+8|=x
Tính giá trị của biểu thức :
\(C=\frac{3a-b}{2a+7}+\frac{3b-a}{2b-7}\) và a - b = 7 ( a khác -3,5 và a khác 3,5)
Ta có a - b = 7 => a = 7 + b
Thay a = 7+b vào C có :
\(C=\frac{3\left(7+b\right)-b}{2\left(7+b\right)+7}+\frac{3b-7-b}{2b-7}\)
\(C=\frac{21+3b-b}{14+2b+7}+\frac{2b-7}{2b-7}\)
\(C=\frac{21+2b}{21+2b}+1=1+1=2\)
Vậy \(C=2\)
Ta có:\(a-b=7\Leftrightarrow7=a-b\)
Thay \(7=a-b\)vào biểu thức,ta được:
\(\frac{3a-b}{2a+7}+\frac{3a-b}{2b-7}=\frac{3a-b}{2a+a-b}+\frac{3a-b}{2b-a+b}\)
\(=\frac{3a-b}{3a-b}+\frac{3b-a}{3b-a}\)
\(=1+1\)
\(=2\)
Vậy giá trị của biểu thức C=2
cho a/b=c/d.với a khác 0,b khác 0,c khác 0,d khác 0
cmr 2a+b/3a-5b=2c+d/3c-5d
Đặt a/b=c/d=k
=>a=bk; c=dk
\(\dfrac{2a+b}{3a-5b}=\dfrac{2\cdot bk+b}{3\cdot bk-5b}=\dfrac{2k+1}{3k-5}\)
\(\dfrac{2c+d}{3c-5d}=\dfrac{2dk+d}{3dk-5d}=\dfrac{2k+1}{3k-5}\)
Do đó: \(\dfrac{2a+b}{3a-5b}=\dfrac{2c+d}{3c-5d}\)
Cách khác:
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\left\{{}\begin{matrix}\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{2a+b}{2c+d}\\\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{3a-5b}{3c-5d}\end{matrix}\right.\)
\(\Rightarrow\dfrac{2a+b}{2c+d}=\dfrac{3a-5b}{3c-5d}\Rightarrow\dfrac{2a+b}{3a-5b}=\dfrac{2c+d}{3c-5d}\left(đpcm\right)\)