Đặt a/b=c/d=k
=>a=bk; c=dk
\(\dfrac{2a+b}{3a-5b}=\dfrac{2\cdot bk+b}{3\cdot bk-5b}=\dfrac{2k+1}{3k-5}\)
\(\dfrac{2c+d}{3c-5d}=\dfrac{2dk+d}{3dk-5d}=\dfrac{2k+1}{3k-5}\)
Do đó: \(\dfrac{2a+b}{3a-5b}=\dfrac{2c+d}{3c-5d}\)
Cách khác:
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\left\{{}\begin{matrix}\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{2a+b}{2c+d}\\\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{3a-5b}{3c-5d}\end{matrix}\right.\)
\(\Rightarrow\dfrac{2a+b}{2c+d}=\dfrac{3a-5b}{3c-5d}\Rightarrow\dfrac{2a+b}{3a-5b}=\dfrac{2c+d}{3c-5d}\left(đpcm\right)\)