Ta có:2bd=c(b+d)
Hay (a+c)d=c(b+d)
\(\Rightarrow\frac{c}{d}=\frac{a+c}{b+d}=\frac{a+c-c}{b+d-d}=\frac{a}{b}\)(T/C...)
\(\Rightarrow\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}-\frac{c}{d}=0\)
Ta có:2bd=c(b+d)
Hay (a+c)d=c(b+d)
\(\Rightarrow\frac{c}{d}=\frac{a+c}{b+d}=\frac{a+c-c}{b+d-d}=\frac{a}{b}\)(T/C...)
\(\Rightarrow\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}-\frac{c}{d}=0\)
cho các số a,b,c,d#0 thỏa mãn a+c=2b và 2bd=c(b+d)
c/m \(\frac{a+b}{a-b}\)=\(\frac{c+d}{c-d}\)
chứng minh rằng ,nếu \(\frac{a+b}{c+a}=\frac{b+c}{d+a}\)trong đó a,b,c,d khác 0 thì a=c
Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\) . Hãy chứng tỏ:
\(\frac{a^2}{b^2}=\frac{3a^2-2ac}{2b^2-2bd}\)
1/ Tìm 2 phân số tối giản biết hiệu của chúng là \(\frac{3}{106}\) và các tử tỉ lệ với 3; 5. Các mẫu tỉ lệ với các số 4; 7.
2/ Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\) . Hãy chứng tỏ:
a) \(\frac{a}{b}=\frac{c}{d}=\frac{-2a+7c}{-3b+7d}\)
b) \(\frac{a^2}{b^2}=\frac{3a^2-2ac}{2b^2-2bd}\)
cho a+b+c+d khác 0\(\frac{a}{b+c+d}\)=\(\frac{b}{a+c+d}\)=\(\frac{c}{a+b+d}\)=\(\frac{d}{a+b+c}\)
tính \(\frac{a+b}{c+d}\)=\(\frac{b+c}{a+d}\)=\(\frac{c+d}{a+b}\)=\(\frac{d+a}{b+c}\)
Cho
\(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}\)
Tính A=\(\frac{a+c}{c+d}=\frac{c+d}{a+b}+\frac{d+a}{b+c}\)
GIÚP MÌNH NHA GIẢI CHI TIẾT MINHD SẮP NỘP RÙI
Cho các số hữu tỉ \(\frac{a}{b}\) , \(\frac{c}{d}\) (b,d > 0)
Chứng minh rằng: nếu \(\frac{a}{b}< \frac{c}{d}\) thì \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)
DÚP MK VỚI NHA MẤY BẠN, MK CHUẨN BỊ KT TOÁN 1 TIẾT
Cho \(\frac{a}{b}=\frac{c}{d}\) CMR :
A) (a + c ) . ( b - d ) = ( a -c ) . ( b + d )
b) (2a + 3c ) .( 2b - 3d ) = ( 2a - 3c ) . ( 2b + 3d )
Cho a, b, c, d khác 0 từ tỷ lệ thức: \(\frac{a}{b}=\frac{c}{d}\)hãy suy ra tỷ lệ thức: \(\frac{a-b}{a}=\frac{c-d}{c}\)