Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{b+c+d}=\frac{b}{a+c+d}=\frac{c}{a+b+d}=\frac{d}{a+b+c}\) =\(\frac{a+b+c+d}{b+c+d+a+c+d+a+b+d+a+b+c}\)
Vì a+b+c+d khác 0
=> b+c+d=a+c+d=a+b+d=a+b+c
=>a=b=c=d
Khi đó:
a + b = c+d
b+c= (a+d)
c+d=a+b
d+a=b+c
=>\(\frac{a+b}{c+d}=\frac{b+c}{a+d}=\frac{c+d}{a+b}=\frac{d+a}{b+c}=1\)
theo bài ra ta có:
\(\frac{a}{b+c+d}=\frac{b}{a+c+d}=\frac{c}{a+b+d}=\frac{d}{a+b+c}\)
=> \(\frac{a}{b+c+d}+1=\frac{b}{a+c+d}+1=\frac{c}{a+b+d}+1=\frac{d}{a+b+c}+1\)
=> \(\frac{a+b+c+d}{b+c+d}=\frac{a+b+c+d}{a+c+d}=\frac{a+b+c+d}{a+b+d}=\frac{a+b+c+d}{a+b+c}\)
=> b+c+d = a+c+d => a=b
a+c+d = a+b+d => b = c
a+b+d = a+b+c => c = d
a+b+c = b+c+d => a = d
=> a = b = c = d
=> \(\frac{a+b}{c+d}+\frac{b+c}{a+d}+\frac{c+d}{a+b}+\frac{d+a}{b+c}=1+1+1+1=4\)
vậy \(\frac{a+b}{c+d}+\frac{b+c}{a+d}+\frac{c+d}{a+b}+\frac{d+a}{b+c}=4\)
cho mk bổ sung thêm :
th1: a+b+c+d = 0
=> a+b = -(c+d)
=> b+c = -(a+d)
=> a+d = -(b+c)
=> c+d = -(a+b)
=> \(\frac{a+b}{c+d}+\frac{b+c}{a+d}+\frac{c+d}{a+b}+\frac{d+a}{b+c}=-1+-1+-1+-1=-4\)