Tìm số chính phương có 4 chữ số abcd, biết số đó chia hết cho 9 và d là số nguyên tố.
Tìm số tự nhiên có bốn chữ số \(\overline{abcd}\), biết rằng nó là một số chính phương, số \(\overline{abcd}\) chia hết cho \(9\) và \(d\) là một số nguyên tố.
\(\overline{abcd}⋮9\) (d là số nguyên tố)
\(\Rightarrow d\in\left\{3;5;7\right\}\)
mà \(\overline{abcd}\) là số chính phương
\(\Rightarrow d\in\left\{5\right\}\Rightarrow c\in\left\{2\right\}\)
\(\Rightarrow\overline{ab}\in\left\{12;20;30;56;72\right\}\)
mà \(\left\{{}\begin{matrix}a+b+c+d⋮9\\c+d=2+5=7\end{matrix}\right.\)
\(\Rightarrow\overline{ab}\in\left\{20;56\right\}\)
\(\Rightarrow\overline{abcd}\in\left\{2025;5625\right\}\)
Số chính phương có bốn chữ số. Số chính phương có bốn chữ số có thể là 1000, 1024, 1089, 1156, 1225, 1296, 1369, 1444, 1521, 1600, 1681, 1764, 1849, 1936, 2025, 2116, 2209, 2304, 2401, 2500, 2601, 2704, 2809, 2916, 3025, 3136, 3249, 3364, 3481, 3600, 3721, 3844, 3969, 4096, 4225, 4356, 4489, 4624, 4761, 4900, 5041, 5184, 5329, 5476, 5625, 5776, 5929, 6084, 6241, 6400, 6561, 6724, 6889, 7056, 7225, 7396, 7569, 7744, 7921, 8100, 8281, 8464, 8649, 8836, 9025, 9216, 9409, 9604, 9801, 10000.
- Nếu tổng các chữ số là 9, thì số abcd
chia hết cho 9.
- Nếu tổng các chữ số là 18, thì số abcd
chia hết cho 9.
- Nếu tổng các chữ số là 27, thì số abcd
chia hết cho 9.
- Nếu tổng các chữ số là 36, thì số abcd
chia hết cho 9.
- Nếu tổng các chữ số là 45, thì số abcd
chia hết cho 9.
Ví dụ: Giả sử ta tìm số tự nhiên có bốn chữ số abcd
, biết rằng nó là một số chính phương, số abcd
chia hết cho 9 và d là một số nguyên tố.
- Ta tìm số chính phương có bốn chữ số: 1024, 1089, 1156, 1225, 1296, 1369, 1444, 1521, 1600, 1681, 1764, 1849, 1936, 2025, 2116, 2209, 2304, 2401, 2500, 2601, 2704, 2809, 2916, 3025, 3136, 3249, 3364, 3481, 3600, 3721, 3844, 3969, 4096, 4225, 4356, 4489, 4624, 4761, 4900, 5041, 5184, 5329, 5476, 5625, 5776, 5929, 6084, 6241, 6400, 6561, 6724, 6889, 7056, 7225, 7396, 7569, 7744, 7921, 8100, 8281, 8464, 8649, 8836, 9025, 9216, 9409, 9604, 9801, 10000.
- Ta kiểm tra số abcd
chia hết cho 9. Ví dụ, nếu ta chọn số 2025, tổng các chữ số là 2 + 0 + 2 + 5 = 9, nên số 2025 chia hết cho 9.
- Ta kiểm tra d có phải là số nguyên tố. Ví dụ, nếu ta chọn số 2025, d = 5 không chia hết cho bất kỳ số nguyên tố nào từ 2 đến căn bậc hai của 5, nên d = 5 là số nguyên tố.
- Kết hợp các kết quả từ các bước trên, ta có số tự nhiên thỏa mãn yêu cầu đề bài là 2025.
A = \(\overline{abcd}\)
+ vì A là một số chính phương nên \(d\) = 0; 1; 4; 5;6; 9
+ Vì \(d\) là số nguyên tố nên \(d\) = 5
+ Vì A là số chính phương mà số chính phương có tận cùng bằng 5 thì chữ số hàng chục là: 2 ⇒ c =2
+ Vì A ⋮ 9 ⇒ a + b + c + d \(⋮\) 9
⇔ a + b + 2 + 5 ⋮ 9 ⇒ a + b = 2; 11
a + b = 2⇒ (a; b) =(1; 1); (2; 0) ⇒ \(\overline{abcd}\) = 1125; 2025
a + b = 11 ⇒(a;b) =(2;9); (3;8); (4; 7); (5; 6); (6;5); (7;4); (8; 3); (9;2)
⇒ \(\overline{abcd}\) = 2925; 3825; 4725; 5625; 6525; 7425; 8325; 9225
Vì 2025 = 452; 5625 = 752 vậy số thỏa mãn đề bài là: 2025 và 5625
Tìm số tự nhiên có 4 chữ số. Biết số đó là 1 số chính phương chia hết cho 9 và chữ số tận cùng của số đó là số nguyên tố
Tìm số chính phương có 4 chữ số, biết số đó chia hết 9 và chữ số hàng đơn vị là số nguyên tố
a, Tìm số tự nhiên gồm 4 chữ số abcd biết rằng nó là một số chính phương , chia hết cho 9 và d là số nguyên tố
b, Tìm số tự nhiên có 2 chữ số xy biết 2 chữ số đó hơn kém nhau 5 đơn vị và xxyy = xx2 +yy2
câu 1 :a) Tìm phân số tối giản khác 0 biết tổng của nó và phân số nghịch đảo của nó bằng \(\frac{41}{20}\)
b) Tìm số chính phương có 4 chữ số abcd , biết số đó chia hết cho 9 và d là số nguyên tố
câu 2 : a) Tìm x,y thuộc N* : \(\frac{x}{2}-\frac{7}{y}=\frac{3}{5}\)
Số chính phương là một số bằng bình phương của một số tự nhiên
FTính chất
a) Số chính phương chỉ có thể tận cùng là : 0; 1; 4; 5; 6; 9 không thể tận cùng bởi
2; 3; 7; 8.
b) Một số chính phương có chữ số tận cùng là 5 thì chữ số hàng chục là 2,
c) Một số chính phương có chữ số hàng đơn vị là 6 thì chữ số hàng chục của nó
là số lẻ.
d) Khi phân tích ra thừa số nguyên tố, số chính phương chỉ chứa các thừa số
nguyên tố với số mũ chẵn ,không chứa thừa số nguyên tố với số mũ lẻ .
FTừ tính chất này suy ra
-Số chính phương chia hết cho 2 thì chia hết cho 4.
-Số chính phương chia hết cho 3 thì chia hết cho 9.
-Số chính phương chia hết cho 5 thì chia hết cho 25.
-Số chính phương chia hết cho 8 thì chia hết cho 16.
1,
a, Tìm số chính phương có 4 chữ số chia hết cho 147 và có chữ số tận cùng là 9
b, Tìm số chính phương có 3 chữ số chia hết cho 56
c, Tìm số chính phương có 4 chữ số chia hết cho 33
Gọi số cần tìm X => 1000<X<9999, đặt X= 147*A =>A không nhỏ hơn 8 và bé hơn hoặc bằng 67, tận cùng của X là 9 nên tận cùng của A phải là 7 như vậy A chỉ có thể 17,27,37,47,57,67 , mặt khác 147=3*7*7 suy ra A=3*k^2 ( k số twj nhiên), theo trên chỉ có hai số 27 và 57 chia hết 3 nên A chỉ có thể là 27, hoặc 57, thấy rằng chỉ có A= 27 thỏa màn, vậy X= 147*24 = 3969 = 63^2.
a) Tìm 1 phân số khác 0 biết tổng của nó với phân số nghịch đảo của nó bằng \(\frac{41}{20}\)
b) Tìm số chính phương abcd, biết abcd chia hết cho 9 và d là số nguyên tố
\(a,\)Số cần tìm là :
\(1:\frac{41}{20}=\frac{20}{41}\)
Vậy.................
b,Ta có :abcd \(⋮9\)và a+b+c+d chia hết cho 9
\(\Rightarrow1000a+100b+10c+d⋮9\)
\(\Rightarrow999a+99b+9c+d+a+b+c⋮9\)
\(=9\left(111a+11b+c\right)+a+b+c+d⋮9\)
Tìm số chính phương có 4 chữ số biết chữ số hàng đơn vị là số nguyên tố và căn bậc hai của số đó có tổng các chữ số là số chính phương.