1. Tìm \(x,y\in Z\) để \(2^x=2y;2^y=2x\).
2. Chứng minh rằng Tích của 8 số nguyên liên tiếp k thể biểu diễn dưới dạng luỹ thừa bậc 4 của 1 số nguyên.
Cho A=(3x-2y)²+(y+z)²+(z-x)²
Tìm x,y,z nguyên để 0<=A<=1
1) Gọi nghiệm của hệ phương trình 2x+y=5 và 2y-x=10K + 5 là (x;y)
Tìm K để B = (2x+1)(y+1) đạt giá trị lớn nhất
2) Cho hệ phương trình x-2y=3-m và 2x+y=3(m+2). Gọi nghiệm của hệ phương trình là (x;y). Tìm m để x^2 + y^2 đạt giá trị nhỏ nhất
cho \(A=\dfrac{2\sqrt{x}-1}{\sqrt{x}-2}\)
a, Tìm đkxđ của A
b, Tính A khi x=\(3+2\sqrt{2}\)
c, Tìm x khi A=\(\dfrac{1}{2}\)
d,Tìm x khi A>2
e, Tìm \(x\in Z\) để A nguyên
a) \(đk:\left\{{}\begin{matrix}x\ge0\\\sqrt{x}\ne2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne4\end{matrix}\right.\)
b) \(x=3+2\sqrt{2}\Rightarrow\sqrt{x}=\sqrt{3+2\sqrt{2}}=\sqrt{\left(\sqrt{2}+1\right)^2}=\sqrt{2}+1\)
\(A=\dfrac{2\sqrt{x}-1}{\sqrt{x}-2}=\dfrac{2\left(\sqrt{2}+1\right)-1}{\sqrt{2}+1-2}=\dfrac{2\sqrt{2}+1}{\sqrt{2}-1}\)
c) \(A=\dfrac{2\sqrt{x}-1}{\sqrt{x}-2}=\dfrac{1}{2}\)
\(\Leftrightarrow4\sqrt{x}-2=\sqrt{x}-2\Leftrightarrow3\sqrt{x}=0\Leftrightarrow x=0\left(tm\right)\)
d) \(A=\dfrac{2\sqrt{x}-1}{\sqrt{x}-2}>2\)
\(\Leftrightarrow2\sqrt{x}-1>2\sqrt{x}-4\Leftrightarrow-1>-4\left(đúng\forall x\right)\)
e) \(A=\dfrac{2\sqrt{x}-1}{\sqrt{x}-2}=\dfrac{2\left(\sqrt{x}-2\right)}{\sqrt{x}-2}+\dfrac{3}{\sqrt{x}-2}=2+\dfrac{3}{\sqrt{x}-2}\in Z\)
\(\Rightarrow\sqrt{x}-2\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)
Do \(x\ge0\)
\(\Rightarrow x\in\left\{1;9;25\right\}\)
1,CMR ko thể tìm được số nguyên x y z thỏa mãn điều kiện sau:
|x-y|+|y-z|+|z-x|=2005
2, cho hàm số: f(x)=|x-1|+1. g(x)=|x-2|+2
a, tìm x để f(x)-2g(x)=-3
b, tìm x để f(x)=g(f(2))
\(D=\frac{15\sqrt{x}-3}{x+2\sqrt{x}-3}+\frac{3\sqrt{x}}{1-\sqrt{x}}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)
a, rút gọn
b, tìm x để B < -4
c, tìm x \(\in\)Z để D \(\in\)Z
d, tìm GTLN của D
Tìm x,y thuộc z , để :
x ^2 +2 . x+1 chia hết cho x+2
x2 + 2x + 1 chia hết cho x + 2
x(x + 2) + 1 chia hết cho x + 2
=> 1 chia hết cho x + 2
=> x + 2 thuộc Ư(1) = {1 ; -1}
Xét 2 trường hợp , ta có :
x + 2 = 1 => x = -1
x + 2 = -1 = > x = -3
\(Q=\left(\frac{\sqrt{x}}{2+\sqrt{x}}+\frac{x+9}{9-x}\right):\left(\frac{3\sqrt{x}+1}{x-3\sqrt{x}}-\frac{1}{\sqrt{x}}\right)\)
a, rút gọn
b, tìm Q < -1
c, tìm x để Q = \(\frac{-3}{4}\)
d, tìm x \(\in\)Z để Q \(\in\)Z
Q=\(\left[\frac{x-y}{2y-x}+\frac{x^2+y^2+y-2}{2y^2+xy-x^2}\right]:\frac{4x^2+4x^2y+y^2-4}{x^2+xy+x+y}\)
1. Rút gọn Q
2. Cho y=1 . Tìm x để Q=\(\frac{2}{5}\)
cho biết A=\(\frac{2}{x}\)-\(\frac{^{x^2}}{x^2+xy}\)-\(\frac{x^2-y^2}{x.y}\)-\(\frac{y^2}{x.y+y^2}\).\(\frac{x+y}{x^2+xy+y}\)
a,rút gọn A và tìm điều kiên của x,y để A xác định
b,tính gtri của A tại x=2,y=\(\frac{1}{2}\);x=1,y=1
c, tìm x \(\in\)z để A =1
tìm x,y,z biết:
x+y+z=-2
1/x+1/y+1/z=-1/2
x^2+2y=-1