Tính nhanh: C=\(\frac{1}{3.5}\)+\(\frac{1}{5.7}\)+\(\frac{1}{7.9}\)+...+\(\frac{1}{37.39}\)
Tính nhanh :\(C=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{37.39}\)
\(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{37.39}\)
\(=\frac{2}{3}-\frac{2}{5}+\frac{2}{5}-\frac{2}{7}+\frac{2}{7}-\frac{2}{9}+...+\frac{2}{37}-\frac{2}{39}\)
\(=\frac{2}{3}-\frac{2}{39}\)
\(=\frac{8}{13}\)
Ta có:
\(\frac{2}{3.5}=\frac{1}{3}-\frac{1}{5}\)
\(\frac{2}{5.7}=\frac{1}{5}-\frac{1}{7}\)
\(\frac{2}{7.9}=\frac{1}{7}-\frac{1}{9}\)
\(......................................\)
\(\frac{2}{37.39}=\frac{1}{37}-\frac{1}{39}\)
nên \(C=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{37.39}=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{37}-\frac{1}{39}\)
\(C=\frac{1}{3}-\frac{1}{39}=\frac{4}{13}\)
A = \(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{37.39}\)
\(A=\frac{1}{2}.\left(\frac{1}{3.5}+\frac{1}{5.7}+...\frac{1}{37.39}\right)\)
\(A=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{39}\right)=\frac{1}{2}.\frac{12}{39}=\frac{6}{39}\)
Ta đặt nhân tử chung nha :
\(A=\frac{1}{2}\left(\frac{1}{3.5}+\frac{1}{5.7}+.....+\frac{1}{37.39}\right)\)
\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{39}\right)\)
\(=\frac{1}{2}.\frac{12}{39}\)
\(=\frac{6}{39}\)
=\(\frac{5-3}{3\cdot5}\)+ \(\frac{7-5}{5\cdot7}\)+ \(\frac{9-7}{7\cdot9}\)+...+ \(\frac{39-37}{37\cdot39}\)
= \(\frac{5}{3\cdot5}\)- \(\frac{3}{3\cdot5}\)+ \(\frac{7}{5\cdot7}\)- \(\frac{5}{5\cdot7}\)+ \(\frac{9}{7\cdot9}\)- \(\frac{7}{7\cdot9}\)+...+ \(\frac{39}{37\cdot39}\)- \(\frac{37}{37\cdot39}\)
= \(\frac{1}{3}\)- \(\frac{1}{5}\)+ \(\frac{1}{5}\)- \(\frac{1}{7}\)+ \(\frac{1}{7}\)- \(\frac{1}{9}\)+...+ \(\frac{1}{37}\)- \(\frac{1}{39}\)
= \(\frac{1}{3}\)- \(\frac{1}{39}\)
=\(\frac{4}{13}\)
bài 1 tính
A = \(\frac{2}{3.5}+\frac{2}{5.7}+..............+\frac{2}{37.39}\); B = \(\frac{4}{5.7}+\frac{4}{7.9}+..........+\frac{4}{59.61}\) ; C = \(\frac{4}{5.9}+\frac{4}{9.13}+.................+\frac{4}{41.45}\) Bài 2 chứng minh : \(\frac{m}{b.\left(b+m\right)}=\frac{1}{b}-\frac{1}{b+m}\)
Tính nhanh tổng sau:\(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{87.89}\)
\(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{87.89}\)
= \(\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{87}-\frac{1}{89}\right)\)
= \(\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{89}\right)\)
= \(\frac{1}{2}.\frac{86}{267}=\frac{43}{267}\)
~~~
Đáp số to quá, tớ không chắc là mình đúng đâu.
#Sunrise
=1/3-1/5+1/5-1/7+1/7-1/9+.....+1/87-1/89
=1/3-1/89
=86/267
tính nhanh : A = \(\frac{2}{2.5}+\frac{2}{5.7}+\frac{2}{7.9}+.......+\frac{2}{37.39}\)
B = \(\frac{1}{4.7}+\frac{1}{7.10}+\frac{1}{10.13}+......+\frac{1}{73.76}\)
http://olm.vn/hoi-dap/question/772291.html
sau 3 phút có kết quả tùy bạn
Tính nhanh:
S = \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+.....+\frac{1}{95.97}+\frac{1}{97.99}\)
\(S=\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{97.99}\)
\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{99}\right)\)
\(=\frac{1}{2}.\frac{98}{99}=\frac{49}{99}\)
S=\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+......+\frac{1}{95.97}+\frac{1}{97.99}\)
S=\(\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.......+\frac{1}{97}-\frac{1}{99}\right)\)
S=\(\frac{1}{2}.\left(1-\frac{1}{99}\right)\)
S=\(\frac{1}{2}.\frac{98}{99}\)
S=\(\frac{49}{99}\)
S = \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)
= \(\frac{1}{2}\) . (\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\))
= \(\frac{1}{2}\). (\(1-\frac{1}{99}\))
= \(\frac{1}{2}\). \(\frac{98}{99}\) = \(\frac{49}{99}\)
Tính nhanh:
\(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{97.99}\)
=1/3-1/5+1/5-1/7+1/7-1/9+....+1/97-1/99
= 1/3 -1/99
=32/99
tích cho mình nha
=1/3-1/5+1/7-1/7+1/9-1/9+...+1/97-1/99
=1/3-1/99
=32/99
Tim gia tri cua cac bieu thuc sau
B= \(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{37.39}\)
C= \(\frac{5}{4.5}+\frac{5}{5.6}+\frac{5}{6.7}+...+\frac{5}{99.100}\)
\(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...\frac{1}{13.15}\)
\(\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+...+\frac{1}{13\cdot15}\)
\(=\frac{1}{2}\left(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{13\cdot15}\right)\)
\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{13}-\frac{1}{15}\right)\)
\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{15}\right)\)
\(=\frac{1}{2}\cdot\frac{4}{15}\)
\(=\frac{2}{15}\)
\(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{13.15}\)
\(=\frac{1}{2}.\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{1}{13.15}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{13}-\frac{1}{15}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{15}\right)\)
\(=\frac{1}{2}.\)4/15
=2/15
Gọi \(A=\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+...+\frac{1}{13\cdot15}\)
=>\(2A=\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{13\cdot15}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{13}-\frac{1}{15}\)
\(=\frac{1}{3}-\frac{1}{15}\)
\(=\frac{5}{15}-\frac{1}{15}\)
\(=\frac{4}{15}\)
Mà A = 2A : 2
=>\(A=\frac{4}{15}:2\)
\(=\frac{4}{15}\cdot\frac{1}{2}\)
\(=\frac{4}{30}=\frac{2}{15}\)