cho A=\(\frac{10}{17}\)+\(\frac{8}{15}\)+\(\frac{11}{16}\)chứng minh A<2
Cho \(A=\frac{10}{17}+\frac{8}{15}+\frac{11}{16}\)
Chứng minh rằng \(A< 2\)
Nhanh ae ơi
10/17+ 8/15 + 11/16=2400 / 4081+2176 / 4080 +2805 / 4080 = 7381/4080
mà 8160 / 4080 mới bằng 2
suy ra 7381 / 4080 < 2 vì 7381< 8160
hay 10/17+8/15+11/16 < 2
Cho A=\(\frac{10}{17}+\frac{8}{15}+\frac{11}{16}\).Chứng tỏ rằng A< 2
CHO:
\(\frac{17}{10}+\frac{8}{15}+\frac{11}{6}\)
Chứng tỏ A<2
sắp xếp các phân số sau theo thứ tự từ bé đến lớn :
a ) \(\frac{7}{10}\ ,\ \frac{10}{13}\ ,\ \)\(\frac{4}{7}\ ,\ \frac{1}{4}\ ,\ \frac{13}{16}\ ,\ \frac{16}{19}\ .\)
b ) \(\frac{13}{10}\ ,\ \frac{17}{14}\ ,\ \frac{11}{8}\ ,\ \frac{8}{5}\ ,\ \frac{18}{15}\ ,\ \frac{21}{18}\)
So sánh A và B biết:
a) A =\(\frac{10^7+5}{10^7-8}\) B =\(\frac{10^8+6}{10^8-7}\)
B) A =\(\frac{15^{16}-13}{15^{16}+7}\) B = \(\frac{16^{17}-12}{16^{17}+8}\)
Bài 1:So sánh Avà B biết rằng:
A=\(\frac{10^{15}+1}{10^{16}+1};\) B=\(\frac{10^{16}+1}{10^{17}+1}\)
A=\(\frac{3}{8^3}+\frac{7}{8^4}\); B=\(\frac{7}{8^3}+\frac{3}{8^4}\)
A=\(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+.......+\frac{1}{19}+\frac{1}{20};\) B=\(\frac{1}{2}\)
Bài 2:Dạng tính tổng đặc biệt:
\(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+.....+\frac{1}{99\cdot100}\)
\(B=\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+.....+\frac{2}{99\cdot101}\)
\(C=\frac{3^2}{10}+\frac{3^2}{40}+\frac{3^2}{88}+......+\frac{3^2}{340}\)
\(D=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+......+\frac{1}{3^8}\)
\(E=\left(1-\frac{1}{2}\right)\cdot\left(1-\frac{1}{3}\right)\cdot\left(1-\frac{1}{4}\right).......\left(1-\frac{1}{99}\right)\)
Bài 3:Dạng chứng minh:
\(A=1+\frac{1}{2}+\frac{1}{3}+......+\frac{1}{99}.\)Chứng minh rằng A chia hết cho 100
A=\(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{70}\).Chứng minh rằng A>\(\frac{4}{3}\)
tính nhanh
a)\(\frac{6}{11}+\frac{7}{17}+\frac{8}{25}+\frac{10}{17}+\frac{16}{11}+\frac{17}{25}\)
b)\(\frac{998+999\cdot1000}{999\cdot1001-1}\)
a) bạn nhóm các phan số có mẫu giống nhau nhé
b) mk xin lỗi vì mk ko có thời gian để giải giúp bạn
a,(6/11+16/11)+(7/17+10/17)+(8/25+17/25)=2+1+1=4
2=998+999*1000/999*1000+999-1=1nha tich minh
a) \(\frac{6}{11}+\frac{7}{17}+\frac{8}{25}+\frac{10}{17}+\frac{16}{11}+\frac{17}{25}\)
\(=\left(\frac{6}{11}+\frac{16}{11}\right)+\left(\frac{7}{17}+\frac{10}{17}\right)+\left(\frac{8}{25}+\frac{17}{25}\right)\)
\(=2+1+1=4\)
b)\(\frac{998+999.1000}{999.1001-1}=\frac{998+999.\left(1001-1\right)}{999.1001-1}=\frac{998+999.1001-999}{999.1001-1}=\frac{999.1001-1}{999.1001-1}=1\)
so sánh
a, A=\(\frac{10^{17}-1}{10^{16}-1}vaB=\frac{10^{16}+2}{10^{15}+2}\)
b,\(C=\frac{2017^{15}+1}{2017^{16}+1}vaO=\frac{2017^{16}-1}{2017^{17}-1}\)
c,\(E=\frac{99^{15}-1}{99^{16}-1}vaF=\frac{99^{16}+2}{99^{17}+2}\)
1. cho A = \(\frac{4}{3}+\frac{7}{3^2}+\frac{10}{3^3}+...+\frac{301}{3^{100}}\)chứng minh: A< \(\frac{11}{4}\)
2. cho B = \(\frac{11}{3}+\frac{17}{3^2}+\frac{23}{3^3}+...+\frac{605}{3^{100}}\)chứng minh: B<7
3. cho C = \(\frac{4}{3}+\frac{13}{3^2}+\frac{22}{3^3}+...+\frac{904}{3^{101}}\)chứng minh: C<\(\frac{17}{4}\)
a) \(A=\frac{4}{3}+\frac{7}{3^2}+\frac{10}{3^3}+...+\frac{301}{3^{100}}\)
\(\Rightarrow3A=4+\frac{7}{3}+\frac{10}{3^2}+...+\frac{301}{3^{100}}\)
\(\Rightarrow3A-A=\left(4+\frac{7}{3}+\frac{10}{3^2}+...+\frac{301}{3^{99}}\right)-\left(\frac{4}{3}+\frac{7}{3^2}+...+\frac{301}{3^{100}}\right)\)
\(\Rightarrow2A=4+1+\frac{1}{3}+...+\frac{1}{3^{98}}-\frac{301}{3^{100}}\)
Đặt \(F=1+\frac{1}{3}+...+\frac{1}{3^{98}}\)
\(\Rightarrow3F=3+1+...+\frac{1}{3^{97}}\)
\(\Rightarrow3F-F=\left(3+...+\frac{1}{3^{97}}\right)-\left(1+...+\frac{1}{3^{98}}\right)\)
\(\Rightarrow2F=3-\frac{1}{3^{98}}< 3\)
\(\Rightarrow F< \frac{3}{2}\)
\(\Rightarrow2A< 4+\frac{3}{2}\)
\(\Rightarrow2A< \frac{11}{2}\)
\(\Rightarrow A< \frac{11}{4}\left(đpcm\right)\)
2. \(B=\frac{11}{3}+\frac{17}{3^2}+\frac{23}{3^3}+...+\frac{605}{3^{100}}\)
\(\Rightarrow3B=11+\frac{17}{3}+\frac{23}{3^2}+...+\frac{605}{3^{99}}\)
\(\Rightarrow3B-B=\left(11+...+\frac{605}{3^{99}}\right)-\left(\frac{11}{3}+...+\frac{605}{3^{100}}\right)\)
\(\Rightarrow2B=11+2+\frac{2}{3}+...+\frac{2}{3^{98}}-\frac{605}{3^{100}}\)
Đặt \(D=2+\frac{2}{3}+...+\frac{2}{3^{98}}\)
\(\Rightarrow3D=6+2+...+\frac{2}{3^{97}}\)
\(\Rightarrow2D=6-\frac{2}{3^{98}}< 6\)( làm tắt )
\(\Rightarrow2D< 6\)
\(\Rightarrow D< 3\)
\(\Rightarrow2B< 11+3\)
\(\Rightarrow2B< 14\)
\(\Rightarrow B< 7\left(đpcm\right)\)
Phần cuối cũng tương tự 2 phần mình vừa làm nhé
Bạn tự làm nốt nhé đánh mệt lắm