Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vũ Trọng Phú
Xem chi tiết
Cá Chép Nhỏ
12 tháng 7 2018 lúc 15:42

10/17+ 8/15 + 11/16=2400 / 4081+2176 / 4080 +2805 / 4080 = 7381/4080
mà 8160 / 4080 mới bằng 2 
suy ra 7381 / 4080 < 2 vì 7381< 8160
hay 10/17+8/15+11/16 < 2

Nguyễn Ngọc Phương Anh
Xem chi tiết
đậu mạnh thế
Xem chi tiết
Mizuki Kanzaki
Xem chi tiết
Phạm Nguyễn Hạnh Vy
Xem chi tiết
Phạm Ninh Đan
Xem chi tiết
Ngô Thu Hà
Xem chi tiết
Trang noo
29 tháng 1 2016 lúc 19:01

a) bạn nhóm các phan số có mẫu giống nhau nhé

b) mk xin lỗi vì mk ko có thời gian để giải giúp bạn

trang chelsea
29 tháng 1 2016 lúc 19:02

a,(6/11+16/11)+(7/17+10/17)+(8/25+17/25)=2+1+1=4

2=998+999*1000/999*1000+999-1=1nha tich minh

Mai Ngọc
29 tháng 1 2016 lúc 19:05

a) \(\frac{6}{11}+\frac{7}{17}+\frac{8}{25}+\frac{10}{17}+\frac{16}{11}+\frac{17}{25}\)

\(=\left(\frac{6}{11}+\frac{16}{11}\right)+\left(\frac{7}{17}+\frac{10}{17}\right)+\left(\frac{8}{25}+\frac{17}{25}\right)\)

\(=2+1+1=4\)

b)\(\frac{998+999.1000}{999.1001-1}=\frac{998+999.\left(1001-1\right)}{999.1001-1}=\frac{998+999.1001-999}{999.1001-1}=\frac{999.1001-1}{999.1001-1}=1\)

Anh Thơ 5c
Xem chi tiết
Anh Thơ 5c
18 tháng 12 2017 lúc 20:05

giúp mình với mai phải nộp rồi

hoang gia kieu
Xem chi tiết
Lê Tài Bảo Châu
27 tháng 7 2019 lúc 11:08

a) \(A=\frac{4}{3}+\frac{7}{3^2}+\frac{10}{3^3}+...+\frac{301}{3^{100}}\)

\(\Rightarrow3A=4+\frac{7}{3}+\frac{10}{3^2}+...+\frac{301}{3^{100}}\)

\(\Rightarrow3A-A=\left(4+\frac{7}{3}+\frac{10}{3^2}+...+\frac{301}{3^{99}}\right)-\left(\frac{4}{3}+\frac{7}{3^2}+...+\frac{301}{3^{100}}\right)\)

\(\Rightarrow2A=4+1+\frac{1}{3}+...+\frac{1}{3^{98}}-\frac{301}{3^{100}}\)

Đặt \(F=1+\frac{1}{3}+...+\frac{1}{3^{98}}\)

\(\Rightarrow3F=3+1+...+\frac{1}{3^{97}}\)

\(\Rightarrow3F-F=\left(3+...+\frac{1}{3^{97}}\right)-\left(1+...+\frac{1}{3^{98}}\right)\)

\(\Rightarrow2F=3-\frac{1}{3^{98}}< 3\)

\(\Rightarrow F< \frac{3}{2}\)

\(\Rightarrow2A< 4+\frac{3}{2}\)

\(\Rightarrow2A< \frac{11}{2}\)

\(\Rightarrow A< \frac{11}{4}\left(đpcm\right)\)

Lê Tài Bảo Châu
27 tháng 7 2019 lúc 11:19

2. \(B=\frac{11}{3}+\frac{17}{3^2}+\frac{23}{3^3}+...+\frac{605}{3^{100}}\)

\(\Rightarrow3B=11+\frac{17}{3}+\frac{23}{3^2}+...+\frac{605}{3^{99}}\)

\(\Rightarrow3B-B=\left(11+...+\frac{605}{3^{99}}\right)-\left(\frac{11}{3}+...+\frac{605}{3^{100}}\right)\)

\(\Rightarrow2B=11+2+\frac{2}{3}+...+\frac{2}{3^{98}}-\frac{605}{3^{100}}\)

Đặt \(D=2+\frac{2}{3}+...+\frac{2}{3^{98}}\)

\(\Rightarrow3D=6+2+...+\frac{2}{3^{97}}\)

\(\Rightarrow2D=6-\frac{2}{3^{98}}< 6\)( làm tắt )

\(\Rightarrow2D< 6\)

\(\Rightarrow D< 3\)

\(\Rightarrow2B< 11+3\)

\(\Rightarrow2B< 14\)

\(\Rightarrow B< 7\left(đpcm\right)\)

Lê Tài Bảo Châu
27 tháng 7 2019 lúc 11:20

Phần cuối cũng tương tự 2 phần mình vừa làm nhé

Bạn tự làm nốt nhé đánh mệt lắm