Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyen tung quan
Xem chi tiết
Hoàng Thị Quỳnh Nhi
Xem chi tiết
Nguyễn Như Quỳnh
Xem chi tiết
Akai Haruma
24 tháng 9 2017 lúc 23:40

Lời giải:

Biến đổi:

\((a+b)(b+c)(c+a)-2abc=ab(a+b)+bc(b+c)+ca(c+a)\)

\(=ab(a+b+c)+bc(a+b+c)+ac(a+b+c)-3abc\)

\(=(a+b+c)(ab+bc+ac)-3abc\)

Ta thấy , nếu cả 3 số \(a,b,c\) đều lẻ, thì \(a+b+c\) lẻ, do đó \(a+b+c\not\vdots 6\) (không t/m điều kiện đề bài)

Do đó, tồn tại ít nhất một số trong 3 số $a,b,c$ là số chẵn

Kéo theo \(3abc\vdots 6\)

Mà \(a+b+c\vdots 6\Rightarrow (a+b+c)(ab+bc+ac)\vdots 6\)

\(\Rightarrow (a+b+c)(ab+bc+ac)-3abc\vdots 6\)

\(\Leftrightarrow (a+b)(b+c)(c+a)-2abc\vdots 6\) (đpcm)

Lê Mạnh Hùng
Xem chi tiết
Hà Thu
30 tháng 11 2016 lúc 19:21

Ta có:P=(a+b)(a+c)(b+c)-abc=(a2b+ab2+b2c+bc2+a2c+ac2+abc+abc)-abc

                                          =(a2b+ab2+abc)+(a2c+ac2+abc)+(b2c+bc2+abc)-2abc

                                          =ab(a+b+c)+ac(a+b+c)+bc(a+b+c)-2abc

                                          =(a+b+c)(ab+ac+bc)-2abc

 thấy a+b+c chia hết cho 4 => (a+b+c)(ab+bc+ac) chia hết cho 4   (1)

Do a+b+c chia hết cho 4 => tồn tại ít nhất trong 3 số a,b,c một số chia hết cho 2=>2abc chia hết cho 4   (2)

Tù (1) và (2)=>P chia hết cho 4

Hạ Vy
Xem chi tiết
Hạ Vy
Xem chi tiết
tống thị quỳnh
Xem chi tiết
Linh Trần
Xem chi tiết
Nguyễn Thị Thanh Huyền
Xem chi tiết