Tìm x biết: 4x^2 - ( x+3 )^2 =0
Bài 1: Tìm x biết a) x^3 - 4x^2 - x + 4= 0 b) x^3 - 3x^2 + 3x + 1=0 c) x^3 + 3x^2 - 4x - 12=0 d) (x-2)^2 - 4x +8 =0
a: \(x^3-4x^2-x+4=0\)
=>\(\left(x^3-4x^2\right)-\left(x-4\right)=0\)
=>\(x^2\left(x-4\right)-\left(x-4\right)=0\)
=>\(\left(x-4\right)\left(x^2-1\right)=0\)
=>\(\left[{}\begin{matrix}x-4=0\\x^2-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x^2=1\end{matrix}\right.\Leftrightarrow x\in\left\{2;1;-1\right\}\)
b: Sửa đề: \(x^3+3x^2+3x+1=0\)
=>\(x^3+3\cdot x^2\cdot1+3\cdot x\cdot1^2+1^3=0\)
=>\(\left(x+1\right)^3=0\)
=>x+1=0
=>x=-1
c: \(x^3+3x^2-4x-12=0\)
=>\(\left(x^3+3x^2\right)-\left(4x+12\right)=0\)
=>\(x^2\cdot\left(x+3\right)-4\left(x+3\right)=0\)
=>\(\left(x+3\right)\left(x^2-4\right)=0\)
=>\(\left(x+3\right)\left(x-2\right)\left(x+2\right)=0\)
=>\(\left[{}\begin{matrix}x+3=0\\x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=2\\x=-2\end{matrix}\right.\)
d: \(\left(x-2\right)^2-4x+8=0\)
=>\(\left(x-2\right)^2-\left(4x-8\right)=0\)
=>\(\left(x-2\right)^2-4\left(x-2\right)=0\)
=>\(\left(x-2\right)\left(x-2-4\right)=0\)
=>(x-2)(x-6)=0
=>\(\left[{}\begin{matrix}x-2=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=6\end{matrix}\right.\)
tìm x biết
a)4x^2+4x-3=0
b)x^4-3x^3-x+3=0
c)x^2(x-1)-4x^2+8x-4=0
\(4x^2+4x-3=0\)
\(\left[\left(2x\right)^2+2.2x.1+1\right]-4=0\)
\(\left(2x+1\right)^2-2^2=0\)
\(\left(2x+1-2\right).\left(2x+1+2\right)=0\)
\(\left(2x-1\right).\left(2x+3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x-1=0\\2x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=-\frac{3}{2}\end{cases}}}\)
Vậy \(\orbr{\begin{cases}x=\frac{1}{2}\\x=-\frac{3}{2}\end{cases}}\)
\(x^4-3x^3-x+3=0\)
\(x^3.\left(x-3\right)-\left(x-3\right)=0\)
\(\left(x-3\right).\left(x^3-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\x^3-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}}\)
Vậy \(\orbr{\begin{cases}x=3\\x=1\end{cases}}\)
\(x^2.\left(x-1\right)-4x^2+8x-4=0\)
\(x^2.\left(x-1\right)-\left[\left(2x\right)^2-2.2x.2+2^2\right]=0\)
\(x^2.\left(x-1\right)-\left(2x-2\right)^2=0\)
\(x^2.\left(x-1\right)-4.\left(x-1\right)^2=0\)
\(\left(x-1\right).\left[x^2-4.\left(x-1\right)\right]=0\)
\(\left(x-1\right).\left[x^2-2.x.2+2^2\right]=0\)
\(\left(x-1\right).\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}}\)
Vậy \(\begin{cases}x=1\\x=2\end{cases}\)
Tham khảo nhé~
tìm x biết
a)4x^2+4x-3=0
b)x^4-3x^3-x+3=0
c)x^2(x-1)-4x^2+8x-4=0
tìm x biết
1, x mũ 3 + 4x mũ 2 + 4x = 0
2, ( x + 3 ) mũ 2 - 4 = 0
3, x mũ 4 - 9x mũ 2 = 0
4, x mũ 2 - 6x + 9 = 81
5, x mũ 3 + 6x mũ 2 + 9x - 4x = 0
1, \(x^3+4x^2+4x=0\Leftrightarrow x\left(x^2+4x+4\right)=0\)
\(\Leftrightarrow x\left(x+2\right)^2=0\Leftrightarrow x=-2;x=0\)
2, \(\left(x+3\right)^2-4=0\Leftrightarrow\left(x+3-2\right)\left(x+3+2\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+5\right)=0\Leftrightarrow x=-5;x=1\)
3, \(x^4-9x^2=0\Leftrightarrow x^2\left(x^2-9\right)=0\)
\(\Leftrightarrow x^2\left(x-3\right)\left(x+3\right)=0\Leftrightarrow x=0;\pm3\)
4, \(x^2-6x+9=81\Leftrightarrow\left(x-3\right)^2=9^2\)
\(\Leftrightarrow\left(x-3-9\right)\left(x-3+9\right)=0\Leftrightarrow\left(x-12\right)\left(x+6\right)=0\Leftrightarrow x=-6;x=12\)
5, em xem lại đề nhé
à lag tý @@
5, \(x^3+6x^2+9x-4x=0\Leftrightarrow x^3+6x^2+5x=0\)
\(\Leftrightarrow x\left(x^2+6x+5\right)=0\Leftrightarrow x\left(x^2+x+5x+5\right)=0\)
\(\Leftrightarrow x\left(x+1\right)\left(x+5\right)=0\Leftrightarrow x=-5;x=-1;x=0\)
a)\(x^3+4x^2+4x=0\)
\(\Leftrightarrow x\left(x^2+4x+4\right)=0\)
\(\Leftrightarrow x\left(x+2\right)^2=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\\left(x+2\right)^2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-2\end{cases}}}\)
b)\(\left(x+3\right)^2-4=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+3-2=0\\x+3+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-5\end{cases}}}\)
c)\(x^4-9x^2=0\)
\(\Leftrightarrow x^2\left(x^2-9\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=0\\x^2-9=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm3\end{cases}}}\)
d)\(x^2-6x+9=81\)
\(\Leftrightarrow\left(x-3\right)^2=81\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=9\\x-3=-9\end{cases}\Leftrightarrow\orbr{\begin{cases}x=12\\x=-6\end{cases}}}\)
e)\(x^3+6x^2+9x-4x=0\)
\(\Leftrightarrow x^3+6x^2+5x=0\)
\(\Leftrightarrow\left(x^2+5x\right)\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+5x=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0;x=-5\\x=-1\end{cases}}}\)
#H
Tìm x biết:
a) x 2 + 3 x = 0 b) x ( 2x − 1) + 4x − 2=0 c) ( x 2 + 2 x )2 − 2 x 2 − 4 x = 3
a. x( x+ 3)= 0
⇔ x= 0 hoặc x+ 3= 0
⇔ x= 0 x = -3
b. x( 2x− 1)+ 2( 2x− 1) =0
⇔ ( 2x− 1)(x+ 2) =0
⇔ 2x− 1 =0 hoặc x+ 2 =0
⇔ 2x =1 x = -2
⇔ x =\(\dfrac{1}{2}\) x = -2
Tìm x biết :
x^4-4x^3+4x^2-(2x-4)(x^2-2x)+(2-x)^2=0
Tìm x biết
a) 25x^2 -1-(5x-1)(x+2) = 0
b) (2x-3)-(3-2x)(x-1) = 0
c) 9 -4x^2-(6+4x)(x-5) = 0
b) ( 2x - 3 ) - ( 3 - 2x )( x - 1 ) = 0
<=> ( 2x - 3 ) + ( 2x - 3 )( x - 1 ) = 0
<=> ( 2x - 3 )( 1 + x - 1 ) = 0
<=> x( 2x - 3 ) = 0
\(\Leftrightarrow\orbr{\begin{cases}x=0\\2x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{3}{2}\end{cases}}}\)
Vậy .....
a, 25x^2 - 1 - (5x -1)(x+2)=0
=> (5x)^2 - 1 + (5x-1)(x+2) = 0
=> (5x-1)(5x+1) + (5x-1)(x+2) = 0
=> (5x-1)(5x+1+x+2) = 0
=> (5x-1)(6x+3) = 0
=> \(\orbr{\begin{cases}5x-1=0\\6x+3=0\end{cases}}\)
a) 25x2 - 1 - ( 5x - 1 )( x + 2 ) = 0
<=> ( 5x - 1 )( 5x + 1 ) - ( 5x - 1 )( x + 2 ) = 0
<=> ( 5x - 1 )( 5x + 1 - x - 2) = 0
<=> ( 5x - 1 )( 4x - 1 ) = 0
\(\Leftrightarrow\orbr{\begin{cases}5x-1=0\\4x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{5}\\x=\frac{1}{4}\end{cases}}}\)
Vậy .......
Tìm x biết: 4x².(x-2)-x+2=0 x³+27+(x+3).(x-9)
\(x^3+27+\left(x+3\right)\left(x-9\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-2x\right)=0\)
\(\Leftrightarrow x\left(x+3\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-3\end{matrix}\right.\)
a: Ta có: \(4x^2\left(x-2\right)-x+2=0\)
\(\Leftrightarrow\left(x-2\right)\left(4x^2-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{1}{2}\\x=-\dfrac{1}{2}\end{matrix}\right.\)
b: Ta có: \(x^3+27+\left(x+3\right)\left(x-9\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-3x+9+x-9\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=0\\x=2\end{matrix}\right.\)
Tìm x biết: a) (x-3)^{2}-(x+2)(x-2)=-5 b) x^{3}-2x^{2}-4x+8=0
a) $(x-3)^2-(x+2)(x-2)=-5$
$\Rightarrow x^2-2\cdot x\cdot3+3^2-(x^2-2^2)=-5$
$\Rightarrow x^2-6x+9-(x^2-4)=-5$
$\Rightarrow x^2-6x+9-x^2+4=-5$
$\Rightarrow-6x+13=-5$
$\Rightarrow-6x=-18$
$\Rightarrow x=3$
b) $x^3-2x^2-4x+8=0$
$\Rightarrow(x^3-2x^2)-(4x-8)=0$
$\Rightarrow x^2(x-2)-4(x-2)=0$
$\Rightarrow (x^2-4)(x-2)=0$
$\Rightarrow (x^2-2^2)(x-2)=0$
$\Rightarrow (x-2)(x+2)(x-2)=0$
$\Rightarrow (x-2)^2(x+2)=0$
\(\Rightarrow\left[{}\begin{matrix}x-2=0\\x+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
$\text{#}Toru$