Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đỗ Thắng
Xem chi tiết
Lê Thị Thục Hiền
29 tháng 5 2021 lúc 9:30

Đề như này pk em?

\(P=\dfrac{a^2}{x}+\dfrac{b^2}{y}\)

Áp dụng bđt Svac-xơ có:

\(P=\dfrac{a^2}{x}+\dfrac{b^2}{y}\ge\dfrac{\left(a+b\right)^2}{x+y}=\left(a+b\right)^2\)

Dấu = xảy ra <=>\(\dfrac{a}{x}=\dfrac{b}{y}\) và x+y=1

YunTae
29 tháng 5 2021 lúc 9:39

Ta có : \(\dfrac{a^2.1}{x}+\dfrac{b^2.1}{y}=\dfrac{a^2\left(x+y\right)}{x}+\dfrac{b^2\left(x+y\right)}{y}\) = \(a^2+\dfrac{a^2y}{x}+\dfrac{b^2x}{y}+b^2\) = \(\left(\dfrac{a^2y}{x}+\dfrac{b^2x}{y}\right)+a^2+b^2\)

Các số dương \(\dfrac{a^2y}{x}\) và \(\dfrac{b^2x}{y}\) có tích không đổi nên tổng của chung nhỏ nhất khi và chỉ khi 

\(\dfrac{a^2y}{x}=\dfrac{b^2x}{y}\Leftrightarrow a^2y^2=b^2x^2\Leftrightarrow ay=bx\Leftrightarrow a\left(1-x\right)=bx\)

⇔ \(x=\dfrac{a}{a+b}\) ; \(y=\dfrac{b}{a+b}\)

Vậy GTNN của biểu thức \(\left(a+b\right)^2\) khi \(x=\dfrac{a}{a+b}\) và \(y=\dfrac{b}{a+b}\)

trần tấn sang
Xem chi tiết
alibaba nguyễn
27 tháng 6 2017 lúc 9:06

\(P=\frac{1}{4x^2+1}+\frac{1}{4y^2+1}+\frac{2}{xy}\)

\(=\frac{1}{4x^2+1}+\frac{1}{4y^2+1}+\frac{\frac{64}{25}}{8xy}+\frac{42}{25xy}\)

\(\ge\frac{\left(1+1+\frac{8}{5}\right)^2}{4\left(x+y\right)^2+2}+\frac{42}{\frac{25\left(x+y\right)^2}{4}}=\frac{12}{5}\)

nguyen duc hung
Xem chi tiết
trần tấn sang
Xem chi tiết
Darlingg🥝
Xem chi tiết
Agatsuma Zenitsu
20 tháng 1 2020 lúc 14:35

Ta có: \(A=1-\left(\frac{1}{x^2}+\frac{1}{y^2}\right)+\frac{1}{x^2y^2}\)

\(=1-\frac{\left(x+y\right)^2-2xy}{x^2y^2}+\frac{1}{x^2y^2}\)

\(=1-\frac{1}{x^2y^2}+\frac{2}{xy}+\frac{1}{x^2y^2}\)

\(=1+\frac{2}{xy}\)

Mà: \(x,y>0;x+y=1\)

Áp dụng BĐT Cosi ta có:

\(1=\left(x+y\right)^2\ge4xy\Rightarrow xy\le\frac{1}{4}\)

Dấu " = " xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)

Lúc đó: \(A=1+\frac{2}{xy}\ge1+\frac{2}{\frac{1}{4}}=9\)

Vậy \(Min_A=9\Leftrightarrow x=y=\frac{1}{2}\)

Khách vãng lai đã xóa
Darlingg🥝
20 tháng 1 2020 lúc 18:16

Tặng lì xì năm ms  nè nhưng thôi tớ giải đc rồi dù sao cảm ơn cậu :))) @huyền

Cách khác:V theo cách của cô tớ hơi lạ =_=:)))

Ta có x + y = 1 => \(\hept{\begin{cases}x-1=-y\\y-1=-x\end{cases}}\Rightarrow\)  tương đương vs biểu thức sau :

\(\frac{\left(x^2-1\right)\left(y^2-1\right)}{x^2y^2}=\frac{\left(x-1\right)\left(x+1\right)\left(y-1\right)\left(y+1\right)}{x^2y^2}\)

\(=\frac{\left(-y\right)\left(x+1\right)\left(-x\right)\left(y+1\right)}{x^2y^2}=\frac{\left(x+1\right)\left(y+1\right)=xy+x+y+1}{xy}=1+\frac{2}{xy}\)

Mà 1 = x + y và x + y > 2 Vxy => (x + y) 2 > 4xy do đó 1 = (x+y)2> 4xy

\(\frac{\Rightarrow1}{4xy}\ge\frac{1}{\left(x+y\right)^2}\Rightarrow\frac{1}{xy}\ge\frac{4}{\left(x+y\right)^2}\Rightarrow\frac{2}{xy}\ge8\Rightarrow\)

MinA = 9 khi x=y=1/2

Khách vãng lai đã xóa
Hoanh viet tuan
Xem chi tiết
Đỗ Thị Trà My
Xem chi tiết
zZz Cool Kid_new zZz
12 tháng 6 2020 lúc 15:29

\(P=\frac{1}{x\left(x+1\right)}+\frac{1}{y\left(y+1\right)}+\frac{1}{z\left(z+1\right)}\)

\(\ge3\sqrt[3]{\frac{1}{xyz\left(x+1\right)\left(y+1\right)\left(z+1\right)}}\)

Mà theo BĐT AM - GM ta có tiếp:

\(xyz\le\left(\frac{x+y+z}{3}\right)^3=1\)

\(\left(x+1\right)\left(y+1\right)\left(z+1\right)\le\left(\frac{x+y+z+3}{3}\right)^3=8\)

\(\Rightarrow P\le\frac{3}{2}\)

Đẳng thức xảy ra tại x=y=z=1

Vậy..................

Khách vãng lai đã xóa
Đỗ Hạnh Nguyên
Xem chi tiết
Steolla
2 tháng 9 2017 lúc 12:14

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

Thế Trường Ngô
Xem chi tiết