Tìm giá trị nhỏ nhất của biểu thức sau:
(x mũ 2 - 9 ) mũ hai + | y-2 | +10
Bài 1 ; Tìm giá trị nhỏ nhất của biểu thức sau ;
K = X mũ 2 + Y mũ 2 - 6x + y + 10
Ta có:
K = x2 + y2 - 6x + y + 10
K = (x2 - 6x + 9) + (y2 + y + 1/4) + 3/4
K = (x - 3)2 + (y + 1/2)2 + 3/4 \(\ge\)3/4 \(\forall\)x; y (vì (x - 3)2 \(\ge\)0 và (y + 1/2)2 \(\ge\)0)
Dấu "=" xảy ra<=> \(\hept{\begin{cases}x-3=0\\y+\frac{1}{2}=0\end{cases}}\) <=> \(\hept{\begin{cases}x=3\\y=-\frac{1}{2}\end{cases}}\)
Vậy MinK = 3/4 <=> x = 3 và y = -1/2
bài 2 tìm giá trị nhỏ nhất của biểu thức sau
C = x mũ 2 - 4x + y mũ 2 - y + 5
Ta có C = x2 - 4x + y2 - y + 5
= \(\left(x^2-4x+4\right)+\left(y^2-y+\frac{1}{4}\right)+\frac{3}{4}\)
= \(\left(x-2\right)^2+\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)
=> Min C = 3/4
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-2=0\\y-\frac{1}{2}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=\frac{1}{2}\end{cases}}\)
Vậy Min C = 3/4 <=> x = 2 ; y = 1/2
C = ( x2 - 4x + 4 ) + ( y2 - y + 1/4 ) + 3/4
= ( x - 2 )2 + ( y - 1/2 )2 + 3/4 ≥ 3/4 ∀ x.y
Dấu "=" xảy ra <=> x = 2 ; y = 1/2 . Vậy MinC = 3/4
a) tìm giá trị nhỏ nhất của biểu thức : A= (x-2) mũ 2 + 24
b) tìm giá trị lớn nhất của biểu thức :B= -x mũ 2 + 13/5
a, Vì \(\left(x-2\right)^2\ge0\) nên \(A=\left(x-2\right)^2+24\ge24\)
Dấu '=' xảy ra khi và chỉ khi: \(\left(x-2\right)^2=0\Leftrightarrow x=2\)
Vậy GTNN của A là 24 khi x=2.
b,Vì \(-x^2\le0\) nên \(B=-x^2+\dfrac{13}{5}\le\dfrac{13}{5}\)
Dấu '=' xảy ra khi và chỉ khi: \(-x^2=0\Leftrightarrow x=0\)
Vậy GTLN của B là \(\dfrac{13}{5}\) khi x=0
Ai trả lời nhanh và đúng mik give tick xanh nhé.
bài 1 ; tìm giá trị nhỏ nhất trong các biểu thức sau ;
[ 2x - 3 } mũ 2 - [ 2x + 1 ] mũ 2 = -3
bài 2 ; tìm giá trị lớn nhất trong các biểu thức sau ;
a, B = x - xmũ 2 + 2
b, C = 6X - X MŨ 2 - 10
C, D= 4X - X MŨ 2 + 5
D, P= X - X MŨ 2 - 1
E, Q = -X MŨ 2 + 10x + 28
123
456
789
101112
ht
mọi người ơi giúp mình trả lồi câu hỏi này vớiiiiiiiiiiii
Trả lời câu hỏi giùm tui với
Tìm giá trị nhỏ nhất của biểu thức
(9-x) mũ 2-7
\((9-x)^2-7\)
Ta thấy: \(\left(9-x\right)^2\ge0\forall x\)
\(\Rightarrow\left(9-x\right)^2-7\ge-7\forall x\)
Dấu \("="\) xảy ra khi: \(9-x=0\Leftrightarrow x=9\)
Vậy GTNN của biểu thức là -7 khi x = 9.
tìm giá trị nhỏ nhất của các biểu thức sau:
a (x-2) mũ 2+245
b (x+5)mũ 2 +(y-7)mũ2+987
c(x-2,5) mũ2+(y+4,8)mux 2 +(z-0,2) mũ2+1,85
Tìm giá trị nhỏ nhất của biểu thức:
a) A=5 x mũ 2 - 1
b) B=3 (x+1) mũ 2 -2
c) C=|x-2| - 10
Tìm giá trị nhỏ nhất của biểu thức:
a) A=5 x mũ 2 - 1
b) B=3 (x+1) mũ 2 -2
c) C=|x-2| - 10
a) ?A = 5x2 - 1
Vì x2 \(\ge\) 0 nên 5x2 \(\ge\) 0.
Dấu ''='' xảy ra khi và chỉ khi x = 0.
Khi đó minA = -1
Vậy minA = -1 \(\Leftrightarrow\) x = 0
b) và c) lập luận tương tự ta được minB = -2 và minC = -10.
tìm giá trị nhỏ nhất và lớn nhất của các biểu thức sau
1, 4x mũ 2 - 4x + 3
2, -x mũ 2 + 10x - 30
3, 25x mũ 2 + 10x
4, x mũ 2 - x + 1
6, 8x - x mũ 2 + 5
1, \(4x^2-4x+3=\left(2x-1\right)^2+2\ge2\)
Dấu ''='' xảy ra khi x = 1/2
Vậy GTNN biểu thức trên là 2 khi x = 1/2
2, \(-x^2+10x-30=-\left(x^2-10x+25+5\right)=-\left(x-5\right)^2-5\le-5\)
Dấu ''='' xảy ra khi x = 5
Vậy GTLN biểu thức trên là -5 khi x = 5
3, \(x^2-x+1=x^2-x+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Dấu ''='' xayr ra khi x = 1/2
Vậy GTNN biểu thức là 3/4 khi x = 1/2
4, \(25x^2+10x=25x^2+10x+1-1=\left(5x+1\right)^2-1\ge-1\)
Dấu ''='' xảy ra khi x = -1/5
Vậy GTNN biểu thức trên là -1 khi x = -1/5
6, \(-x^2+8x+5=-\left(x^2-8x-5\right)=-\left(x^2-8x+16-21\right)\)
\(=-\left(x-4\right)^2+21\le21\)
Dấu ''='' xảy ra khi x = 4
Vậy GTLN biểu thức trên là 21 khi x = 4
Trả lời:
1, \(4x^2-4x+3=4x^2-4x+1+2=\left(2x-1\right)^2+2\ge2\forall x\)
Dấu "=" xảy ra khi 2x - 1 = 0 <=> x = 1/2
Vậy GTNN của bt = 2 khi x = 1/2
2, \(-x^2+10x-30=-\left(x^2-10x+30\right)=-\left(x^2-10x+25+5\right)=-\left[\left(x-5\right)^2+5\right]\)
\(=-\left(x-5\right)^2-5\le-5\forall x\)
Dấu "=" xảy ra khi x - 5 = 0 <=> x = 5
Vậy GTLN của bt = - 5 khi x = 5
3, \(25x^2+10x=25x^2+10x+1-1=\left(5x+1\right)^2-1\ge-1\forall x\)
Dấu "=" xảy ra khi 5x + 1 = 0 <=> x = - 1/5
Vậy GTNN của bt = - 1 khi x = - 1/5
4, \(x^2-x+1=x^2-2x\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)
Dấu "=" xảy ra khi x - 1/2 = 0 <=> x = 1/2
Vậy GTNN của bt = 3/4 khi x = 1/2
5, \(8x-x^2+5=-\left(x^2-8x-5\right)=-\left(x^2-8x+16-21\right)=-\left[\left(x-4\right)^2-21\right]\)
\(=-\left(x-4\right)^2+21\le21\forall x\)
Dấu "=" xảy ra khi x - 4 = 0 <=> x = 4
Vậy GTLN của bt = 21 khi x = 4