Tìm số tự nhiên bé nhất, biết rằng khi chia số đó cho 2011 thì dư là 23, còn khi chia số đó cho 2013 thì dư là 32.
Tìm số số tự nhiên bé nhất biết rằng khi chia số đó cho 2005 thì được dư là 23, còn khi chia số đó cho 2007 thì được dư là 32
tìm số tự nhiên bé nhất biết rằng nếu đem số đó chia cho 2009 thì có số dư là 23 và chia cho 2011 thì được số dư là 32
Tìm số tự nhiên nhỏ nhất biết rằng khi chia số này cho 2001 thì được số dư là 23 , còn khi chia nó cho 2003 thì được số dư là 32
Gọi a là số cần tìm
Vì a chia 2001 dư 23 suy ra a = 2001p + 23(p thuộc N)
Vì a chia 2003 dư 32 suy ra a = 2003q + 32(q thuộc N)
Suy ra 2001p+23=2003q+32
2001p-2001q=2q+32-23
2001(p-q)=2q+9
Suy ra 2q+9 chia hết cho 2001
Mà a nhỏ nhất thì q nhỏ nhất
Nếu 2q+9=2001 suy ra q=996(chọn)
Với q=996 suy ra a=996 x 2003+32=1995020
Vậy số cần tìm là 1995020
Tìm số tự nhiên nhỏ nhất biết rằng khi chia số này cho 2001 thì được dư là 23,còn khi chia nó cho 2003 thì đươc số dư là 32
Gọi a là số cần tìm
Vì a chia 2001 dư 23 suy ra a = 2001p + 23(p thuộc N)
Vì a chia 2003 dư 32 suy ra a = 2003q + 32(q thuộc N)
Suy ra 2001p+23=2003q+32
2001p-2001q=2q+32-23
2001(p-q)=2q+9
Suy ra 2q+9 chia hết cho 2001
Mà a nhỏ nhất thì q nhỏ nhất
Nếu 2q+9=2001 suy ra q=996(chọn)
Với q=996 suy ra a=996 x 2003+32=1995020
Vậy số cần tìm là 1995020
Gọi số cần tìm là a, a \(\in\) N*, a nhỏ nhất
Vì a : 2001 dư 23 \(\Rightarrow a=2001m+23\) (m,n \(\in\) N*)
a : 2003 dư 32 \(\Rightarrow a=2003n+32\)
\(\Rightarrow2001m+23=2003n+32\)
\(\Rightarrow2001m+23=2001n+2n+32\)
\(\Rightarrow2001m-2001n=2n+32-23\)
\(\Rightarrow2001\left(m-n\right)=2n+9\)
\(\Rightarrow2n+9⋮2001\)
Để a nhỏ nhất thì n nhỏ nhất \(\Rightarrow\) 2n+9 nhỏ nhất
Nếu \(2n+9=2001\Rightarrow n=996\) (chọn)
Với \(n=996\) thì \(a=2003.996+32=1995020\)
Vậy số cần tìm là 1995020.
Tìm số tự nhiên nhỏ nhất biết rằng khi chia số này cho 1991 thì dư 23, khi chia cho 1993 thì dư 32
Tìm số tự nhiên nhỏ nhất biết rằng khi chia số này cho 1991 thì dư 23, khi chia cho 1993 thì dư 32
Gọi số cần tìm là a ( a ∈ N* ; 99 < a < 1000 )
Theo bài ra , ta có :
\(\hept{\begin{cases}a-8⋮17\\a-16⋮25\end{cases}}\Rightarrow\hept{\begin{cases}\left(a-8\right)+17⋮17\\\left(a-16\right)+25⋮25\end{cases}}\Rightarrow\hept{\begin{cases}a+9⋮17\\a+9⋮25\end{cases}}\)
\(\Rightarrow a-9∈BC\left(17,25\right)\)
Vì 17 và 25 nguyên tố cùng nhau
=> BCNN( 17 . 25 ) = 17 . 25 = 425
=> BC( 17 , 25 ) = { 0 ; 425 ; 850 ; 1275 ; ... }
=> a + 9 ∈ { 0 ; 425 ; 850 ; 1275 ; ... }
=> a ∈ { 416 ; 841 ; 1266 ; ... } ( do a ∈ N* )
Mà 99 < a < 1000
=> a ∈ { 416 ; 841 }
tìm số tự nhiên bé nhất, biết rằng khi chia số này cho 29 thì dư 5 còn chia cho 31 thì dư 28. số cần tìm là
Bạn xem cách giải ở đây nha!
http://olm.vn/hoi-dap/question/114872.html oke!
tìm số tự nhiên bé nhất, biết rằng khi chia số này cho 29 thì dư 5 còn chia cho 31 thì dư 28. số cần tìm là
goi so be nhat la a, ta co
a=29p+5; a=31q+28
khi do ta co: 29p+5 = 31q+28 (*)
=> 29(p-q) = 2q+23
=> 28(p-q) + (p-q) - 1 = 2q +22
ve phai chia het cho 2 nen [(p-q)-1] cung chi het cho 2
ma do a la so tu nhien nho nhat nen [(p-q)-1] = 0 => p = q+1 thay vao (*)
ta duoc q = 3 => p = 4. Vay so a = 31*3+28 = 121 hay a = 4*29 + 5 = 121
121 bạn à! Câu này cũng có trong đề KSHSG Toán 6 của Huyện Sông Lô đấy!!!!
Tìm số tự nhiên có 3 chữ số, biết rằng khi chia số đó cho 17 thì được số dư là 8, còn khi chia số đó cho 25 thì số dư là 16
Lời giải:
Do $a$ chia $25$ dư $16$ nên $a=25k+16$ với $k$ nguyên.
$a-8\vdots 17$
$\Rightarrow 25k+8\vdots 17$
$\Rightarrow 25k+25\vdots 17$
$\Rightarrow 25(k+1)\vdots 17$
$\Rightarrow k+1\vdots 17\Rightarrow k=17m-1$ với $m$ nguyên.
Vậy $a=25k+16=25(17m-1)+16=425m-9$
Do $a$ có 3 chữ số nên $100\leq 425m-9\leq 999$
$\Rightarrow 0< m<3$
$\Rightarrow m=1, 2$
$\Rightarrow a=416$ hoặc $a=841$