Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đinh Hoàng Anh
Xem chi tiết
lưu hữu đạt
Xem chi tiết
Nguyễn Thị Diệu
Xem chi tiết
Trần Thanh Long
7 tháng 12 2017 lúc 22:02

Gọi a là số cần tìm

Vì a chia 2001 dư 23 suy ra a = 2001p + 23(p thuộc N)

Vì a chia 2003 dư 32  suy ra a = 2003q + 32(q thuộc N)

Suy ra 2001p+23=2003q+32              

          2001p-2001q=2q+32-23

         2001(p-q)=2q+9

Suy ra 2q+9 chia hết cho 2001

Mà a nhỏ nhất thì q nhỏ nhất

Nếu 2q+9=2001 suy ra q=996(chọn)

Với q=996 suy ra a=996 x 2003+32=1995020

Vậy số cần tìm là 1995020      

Trần Văn Toàn
Xem chi tiết
Trần Thanh Long
7 tháng 12 2017 lúc 22:03

Gọi a là số cần tìm

Vì a chia 2001 dư 23 suy ra a = 2001p + 23(p thuộc N)

Vì a chia 2003 dư 32  suy ra a = 2003q + 32(q thuộc N)

Suy ra 2001p+23=2003q+32              

          2001p-2001q=2q+32-23

         2001(p-q)=2q+9

Suy ra 2q+9 chia hết cho 2001

Mà a nhỏ nhất thì q nhỏ nhất

Nếu 2q+9=2001 suy ra q=996(chọn)

Với q=996 suy ra a=996 x 2003+32=1995020

Vậy số cần tìm là 1995020      

Sakuraba Laura
8 tháng 12 2017 lúc 5:21

Gọi số cần tìm là a, a \(\in\) N*, a nhỏ nhất

Vì a : 2001 dư 23 \(\Rightarrow a=2001m+23\)    (m,n \(\in\) N*)

    a : 2003 dư 32 \(\Rightarrow a=2003n+32\)

\(\Rightarrow2001m+23=2003n+32\)

\(\Rightarrow2001m+23=2001n+2n+32\)

\(\Rightarrow2001m-2001n=2n+32-23\)

\(\Rightarrow2001\left(m-n\right)=2n+9\)

\(\Rightarrow2n+9⋮2001\)

Để a nhỏ nhất thì n nhỏ nhất \(\Rightarrow\) 2n+9 nhỏ nhất

Nếu \(2n+9=2001\Rightarrow n=996\) (chọn)

Với \(n=996\) thì \(a=2003.996+32=1995020\)

Vậy số cần tìm là 1995020.

Nameless
Xem chi tiết
Thủy Phạm Thanh
Xem chi tiết
Khánh Ngọc
Xem chi tiết
Member lỗi thời :>>...
29 tháng 8 2021 lúc 16:38

Gọi số cần tìm là a ( a ∈ N* ; 99 < a < 1000 )

Theo bài ra , ta có :

\(\hept{\begin{cases}a-8⋮17\\a-16⋮25\end{cases}}\Rightarrow\hept{\begin{cases}\left(a-8\right)+17⋮17\\\left(a-16\right)+25⋮25\end{cases}}\Rightarrow\hept{\begin{cases}a+9⋮17\\a+9⋮25\end{cases}}\)

\(\Rightarrow a-9∈BC\left(17,25\right)\)

Vì 17 và 25 nguyên tố cùng nhau

=> BCNN( 17 . 25 )  = 17 . 25 = 425

=> BC( 17 , 25 ) = { 0 ; 425 ; 850 ; 1275 ; ... }

=> a + 9 ∈ { 0 ; 425 ; 850 ; 1275 ; ... }

=> a  ∈ { 416 ; 841 ; 1266 ; ... } ( do a ∈ N* )

Mà 99 < a  < 1000

=> a  ∈ { 416 ; 841 }

Khách vãng lai đã xóa
kudo shinichin
Xem chi tiết
nguyentiendung443
6 tháng 12 2016 lúc 20:25

KQ=121

kudo shinichin
6 tháng 12 2016 lúc 20:28

TRÌNH BÀY GÚP

Shizadon
6 tháng 12 2016 lúc 20:31

Bạn xem cách giải ở đây nha!

http://olm.vn/hoi-dap/question/114872.html oke!

nguyễn thùy trang
Xem chi tiết
hoc van toan
10 tháng 12 2014 lúc 22:30

goi so be nhat la a, ta co

a=29p+5; a=31q+28

khi do ta co: 29p+5 = 31q+28 (*)

=> 29(p-q) = 2q+23

=> 28(p-q) + (p-q) - 1 = 2q +22

ve phai chia het cho 2 nen [(p-q)-1] cung chi het cho 2

ma do a la so tu nhien nho nhat nen [(p-q)-1] = 0 => p = q+1 thay vao (*)

ta duoc q = 3 => p = 4. Vay so a = 31*3+28 = 121 hay a = 4*29 + 5 = 121

Tripe cyus Gaming
13 tháng 10 2015 lúc 17:58

121 do pan a

 

 

Dung Trần
9 tháng 4 2016 lúc 13:08

121 bạn à! Câu này cũng có trong đề KSHSG Toán 6 của Huyện Sông Lô đấy!!!!

Nguyễn Văn An
Xem chi tiết
Akai Haruma
25 tháng 6 lúc 13:50

Lời giải:
Do $a$ chia $25$ dư $16$ nên $a=25k+16$ với $k$ nguyên.

$a-8\vdots 17$

$\Rightarrow 25k+8\vdots 17$

$\Rightarrow 25k+25\vdots 17$

$\Rightarrow 25(k+1)\vdots 17$

$\Rightarrow k+1\vdots 17\Rightarrow k=17m-1$ với $m$ nguyên.

Vậy $a=25k+16=25(17m-1)+16=425m-9$

Do $a$ có 3 chữ số nên $100\leq 425m-9\leq 999$

$\Rightarrow 0< m<3$

$\Rightarrow m=1, 2$

$\Rightarrow a=416$ hoặc $a=841$