So sánh
a) 2^0 + 2^1 + 2^2 + 2^3 +...+2^2010 Và B = 2^2011 - 1
b) A = 2009 . 2011 và B = 2010^2
a/chứng minh A=21+22+23+24+....+22010chia hết cho 3 và 7
b/so sánhA=2009+2011 và B=20102
c/so sánh A=3450 và B=5300
a, Chia hết cho 3 thì nhóm 2 số thành 1 cặp ; chia hết cho 7 thì nhóm 3 số thành 1 cặp
b, Đề phải là A = 2009.2011
Có :A = 2009.(2010+1) = 2009.2010+2009
= 2009.2010+2010-1 = 2010.(2009+1)-1 = 2010^2-1
Vì 2010^2-1 < 2010^2 = B => A < B
c, A = (3^3)^150 = 27^150
B = (5^2)^150 = 25^150
Vì 27^150 > 25^150 => A > B
k mk nha
So sánh A và B biết A+2^0+2^1+2^2+2^3+...+2^2009+2^2010 và B =2^2011
Ta có: A=2^0+2^1+2^2+2^3+...+2^2009+2^2010
=> 2A=2+2^2+2^3+2^4+...+2^2010+2^2011
=> A=2A-A= 2^2011-1
mà: B=2^2011
Vậy A<B
so sanh: A=2009^2009+1/2009^2010+1 và B=2009^2010-2/2009^2011-2
So sánh A=2009^2009+1/2009^2010+1 và B=2009^2010-2/2009^2011-2
So sánh: A=2009^2009+1/2009^2010+1 và B=2009^2010-2/2009^2011-2
So Sánh : A = \(\dfrac{2009^{2009}+1}{2009^{2010}+1}\) và B = \(\dfrac{2009^{2010}-2}{2009^{2011}-2}\)
Ta có :
\(B=\dfrac{2009^{2010}-2}{2009^{2011}-2}< 1\)
\(\Leftrightarrow B< \dfrac{2009^{2010}-2+2011}{2009^{2011}-2+2011}=\dfrac{2009^{2010}+2009}{2009^{2011}+2009}=\dfrac{2009\left(2009^{2009}+1\right)}{2009\left(2009^{2010}+1\right)}=\dfrac{2009^{2009}+1}{2009^{2010}+1}=A\)
\(\Leftrightarrow A>B\)
Bài 2 : So sánh
A=2008/2009+2009+2010+2010+2011 và B=2008+20092+2010/2009+2010+2011
So sánh:
A=2009^2009+1/2009^2010+1
và
B=2009^2010-2/2009^2011-2
Bạn Edogawa giải thích rõ hơn cho mình hiểu được không?
dễ quá cái này so sánh B với 1 sau đó suy ra B< B- thêm tử và mẫu 2011
Edogawa giải rõ ra cho mình hiểu được ko
2. So sánhA=\(\frac{2009^{2009}+1}{2009^{2010}+1}\) VÀ B=\(\frac{2009^{2010}-2}{2009^{2011}-2}\)