Cho a,b lớn hơn 0 thoả mãn cos(2-ab)- cos(a+b)= a+b +ab -2
Tìm GTNN của P = a +2b
Cho `a, b > 0` thoả mãn `a ≥ 2b`
Tìm GTNN của `P =` $\dfrac{2a^2 + b^2 - 2ab}{ab}$
\(a\ge2b\Rightarrow\dfrac{a}{b}\ge2\)
\(P=2\left(\dfrac{a}{b}\right)+\left(\dfrac{b}{a}\right)-2=\dfrac{a}{4b}+\dfrac{b}{a}+\dfrac{7}{4}\left(\dfrac{a}{b}\right)-2\ge2\sqrt{\dfrac{ab}{4ab}}+\dfrac{7}{4}.2-2=\dfrac{5}{2}\)
\(P_{min}=\dfrac{5}{2}\) khi \(a=2b\)
cho |a| khác |b| và ab khác 0 thoả mãn (a−b)/(a^2+ab) + (a+b)/(a^2−ab) = (3a−b)/(a^2−b^2).Tính B=(a^3+2a^2b+3b^2)/(2a^3+a^2b+b^3)
cho |a| khác |b| và ab khác 0 thoả mãn (a−b)/(a^2+ab) + (a+b)/(a^2−ab) = (3a−b)/(a^2−b^2).Tính B=(a^3+2a^2b+3b^2)/(2a^3+a^2b+b^3)
Cho A,B,C là các góc của tam giác. Chứng minh các đẳng thức sau: a. cos(A+B)+cosC=0 b. cosA+B/2=sinC/2 c. cos(A-B)+cos(2B+C)=0
a) \(cos\left(A+B\right)+cosC=0\)
\(\Leftrightarrow cos\left(\pi-C\right)+cosC=0\)
\(\Leftrightarrow-cosC+cosC=0\)
\(\Leftrightarrow0=0\left(đúng\right)\)
\(\Leftrightarrow dpcm\)
b) \(cos\left(\dfrac{A+B}{2}\right)=sin\dfrac{C}{2}\)
\(\Leftrightarrow cos\left(\dfrac{\pi-C}{2}\right)=sin\dfrac{C}{2}\)
\(\Leftrightarrow cos\left(\dfrac{\pi}{2}-\dfrac{C}{2}\right)=sin\dfrac{C}{2}\)
\(\Leftrightarrow sin\dfrac{C}{2}=sin\dfrac{C}{2}\left(đúng\right)\)
\(\Leftrightarrow dpcm\)
c) \(cos\left(A-B\right)+cos\left(2B+C\right)=0\left(1\right)\)
Ta có : \(A+B+C=\pi\)
\(\Leftrightarrow2B+C=\pi-A+B\)
\(\Leftrightarrow2B+C=\pi-\left(A-B\right)\)
\(\left(1\right)\Leftrightarrow cos\left(A-B\right)+cos\left[\pi-\left(A-B\right)\right]=0\)
\(\Leftrightarrow cos\left(A-B\right)-cos\left(A-B\right)=0\)
\(\Leftrightarrow0=0\left(đúng\right)\)
\(\Leftrightarrow dpcm\)
cho a, b>0 thỏa mãn a+b≤1. Tìm GTNN của biểu S=1/(a^3+b^3)+1/a^2b+1/ab^2
\(S=\dfrac{1}{a^3+b^3}+\dfrac{1}{a^2b}+\dfrac{1}{ab^2}\ge\dfrac{1}{a^3+b^3}+\dfrac{4}{a^2b+ab^2}\)
\(S\ge\left(\dfrac{1}{a^3+b^3}+\dfrac{1}{a^2b+ab^2}+\dfrac{1}{a^2b+ab^2}+\dfrac{1}{a^2b+ab^2}\right)+\dfrac{1}{ab\left(a+b\right)}\)
\(S\ge\dfrac{16}{a^3+b^3+3a^2b+3ab^2}+\dfrac{1}{\dfrac{\left(a+b\right)^2}{4}.\left(a+b\right)}=\dfrac{20}{\left(a+b\right)^3}\ge20\)
\(S_{min}=20\) khi \(a=b=\dfrac{1}{2}\)
Cho a,b,c >0 thoả mãn a+b+c=2
tìm GTLN của căn 2a+bc + căn 2b+ca + căn 2c+ab
1.Cho a,b,c,dương thỏa mãn a+b+c=1.Tìm GTNN của P=a3+b3+1/4c3
2.Cho a,b,c ko âm thoả mãn a+b+c=1.CMR \(ab+bc+ca-2abc\le\frac{2}{27}\)
3.Cho a,b là các số dương thỏa mãn ab=1.Tìm GTNN cảu biểu thức \(F=\left(2a+2b-3\right)\left(a^3+b^3\right)+\frac{7}{\left(a+b\right)^2}\)
24+t−94(∗)
Xét hàm (∗) được: MinF(t)=F(23)=−19
⇒MinP=MinF(t)=−19.dấu "=" xảy ra khi a=b=c=13
cho 2 số thực a,b thoả mãn \(\left|a\right|\ne\left|b\right|\)và \(ab\ne0\)thoả mãn: \(\frac{a-b}{a^2+ab}+\frac{a+b}{a^2-ab}=\frac{3a-b}{a^2-b^2}\). Tính giá trị biểu thức \(P=\frac{a^3+2a^2b+2b^3}{2a^3+ab^2+2b^3}\)
quy đồng mẫu số ta được
\(\frac{\left(a-b\right)^2}{a\left(a^2-b^2\right)}+\frac{\left(a+b\right)^2}{a\left(a^2-b^2\right)}=\frac{a\left(3a-b\right)}{a\left(a^2-b^2\right)}\)<=> (a-b)2 +(a+b)2 = a(3a-b) <=> a2- ab- 2b2= 0 <=> (a+ b)(a- 2b) = 0
<=> a=-b hoăc a =2b
với a= -b => P= \(\frac{-b^3+2b^3+2b^3}{-2b^3-b^3+2b^3}=-3\)
với a =2b => P= \(\frac{\left(2b\right)^3+2.\left(2b\right)^2b+2b^3}{2.\left(2b\right)^3+2b.b^2+2b^3}=\frac{3}{2}\)
cho |a| khác |b| và ab khác 0 thoả mãn \(\frac{a-b}{a^2+ab}\) +\(\frac{a+b}{a^2-ab}\)=\(\frac{3a-b}{a^2-b^2}\)
Tính B=\(\frac{a^3+2a^2b+3b^2}{2a^3+a^2b+b^3}\)