tìm số nguyên m để:
a, giá trị của bthức 2020m-1 chia hết cho gtrị bthức 2m+1
b, GTTĐ của 3m-1 <3
a) Cho đa thức f(x) thỏa mã đkiện
x.f.(x+1)=(x+2).f(x)
CMR : Đa thức f(x) có ít nhất 2 nghiệm
b) CMR : Nếu gtrị của bthức f(x)=ax^2+ bx +c chia hết cho 2007 với mọi x nguyên ( a,b là các số nguyên ) thì các hệ số a,b,c đều chia hết cho 2007
a) Ta có:\(x.f\left(x+1\right)=\left(x+2\right).f\left(x\right)\)
+)Thay \(x=0\) ta có:\(2.f\left(0\right)=0\)\(\implies\) \(f\left(0\right)=0\)
Vậy đa thức \(f\left(x\right)\) có nghiệm là x=0 (1)
+)Thay \(x=-2\) ta có:\(-2.f\left(-1\right)=0\)\(\implies\) \(f\left(-1\right)=0\)
Vậy đa thức \(f\left(x\right)\) có nghiệm là x=-1 (2)
Từ (1),(2)
\(\implies\) đa thức \(f\left(x\right)\) có ít nhất hai nghiệm
b)Ta có:\(f\left(x\right)=ax^2+bx+c\)
+)Với x=0 \(\implies\) \(f\left(0\right)=a.0^2+b.0+c=c:2007\left(1\right)\)
+)Với x=1 \(\implies\) \(f\left(1\right)=a.1^2+b.1+c=a+b+c:2007\left(2\right)\)
+)Với x=-1 \(\implies\) \(f\left(-1\right)=a.\left(-1\right)^2-b.1+c=a-b+c:2007\left(3\right)\)
Từ (2);(3) cộng vế với vế ta được:
\(\implies\) \(f\left(1\right)+f\left(-1\right)=a+b+c+a-b+c\)
\(=2a+2c\)
\(=2.\left(a+c\right):2007\)
mà \(\left(2,2007\right)=1\)\(\implies\) \(a+c:2007\) \(\left(4\right)\)
Từ \(\left(1\right),\left(4\right)\) \(\implies\) \(a:2007\) \(\left(5\right)\)
Từ \(\left(4\right),\left(2\right)\) \(\implies\) \(b:2007\) \(\left(6\right)\)
Từ \(\left(1\right),\left(5\right),\left(6\right)\) \(\implies\) các hệ số a,b,c đều chia hết cho 2007\(\left(đpcm\right)\)
Tìm số nguyên m để:
a) Giá trị của biểu thức m-1 chia hết cho già trị của biểu thức 2m+1
b) |3m-1|<3
a) Tách biểu thức \(\frac{m-1}{2m+1}\)ra :
\(\frac{2\left(m-1\right)}{2\left(2m+1\right)}\)= \(\frac{2m+1-3}{2\left(2m+1\right)}\)= \(\frac{1}{2}-\frac{3}{2\left(2m+1\right)}\)
Vậy để biểu thức m-1 chia hết cho 2m+1
<=> Biểu thức \(\frac{3}{2\left(2m+1\right)}\)= \(\frac{x}{2}\) với x là số nguyên
Nhân chéo biểu thức trên , ta được : \(6\) = \(2x\left(2m+1\right)\)
\(x=\frac{6}{4m+2}\) Vậy để x là số nguyên thì 6 phải chia hết cho 4m+2
\(4m+2\)thuộc (-6 , -3, -2, -1, 1, 2 , 3 , 6)
Để thỏa mãn điều kiện trên thì m có nghiệm là (-2, -1, 0, 1)
Vậy kết luận nếu m = -2 , m= - 1, m= 0 , m = 1 thì biểu thức m-1 chia hết cho 2m+1
b) Để \(\left|3m-1\right|< 3\)
<=> \(\orbr{\begin{cases}3m-1< 3\\3m-1>-3\end{cases}}\) <=> \(\orbr{\begin{cases}3m< 4\\3m>-2\end{cases}}\) <=> \(\frac{-2}{3}< m< \frac{4}{3}\)
Để số nguyên m thỏa mãn trường hợp trên thì m phải \(\in\left(0,1\right)\)
Vậy với m =0 hoặc m =1 thì \(\left|3m-1\right|< 3\)
Tìm số nguyên m để:
a) Giá trị của biểu thức m-1 chia hết cho giá trị của biểu thức 2m-1
b) [3m-1] < 3
giúp mình nhé mình tick cho !!!
thấy chưa tôi vừa tick cho bạn do Bùi Quang Vinh
1. Tìm x là số chính phương để P nhận giá trị nguyên:
\(P=\dfrac{5-3\sqrt{x}}{\sqrt{x}-1}\)
2. Tìm GTLN của bthức sau:
\(C=\dfrac{2022}{3x^2-5x+1}\)
1) \(P=\dfrac{5-3\sqrt{x}}{\sqrt{x}-1}\left(đk:x\ge0,x\ne1\right)\)
\(=\dfrac{-3\left(\sqrt{x}-1\right)+2}{\sqrt{x}-1}=-3+\dfrac{2}{\sqrt{x}-1}\in Z\)
\(\Rightarrow\sqrt{x}-1\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)
Do \(x\ge0,x\ne1\) và x là số chính phương
\(\Rightarrow x\in\left\{0;4;9\right\}\)
2) \(3x^2-5x+1=3\left(x^2-\dfrac{5}{3}x+\dfrac{25}{36}\right)-\dfrac{13}{12}=3\left(x-\dfrac{5}{6}\right)^2-\dfrac{13}{12}\ge-\dfrac{13}{12}\)
\(\Rightarrow C=\dfrac{2022}{3x^2-5x+1}\le2022:\left(-\dfrac{13}{12}\right)=-\dfrac{24264}{13}\)
\(minC=-\dfrac{24624}{13}\Leftrightarrow x=\dfrac{5}{6}\)
Cho a,b > 0, a + b = 1. tìm giá trị nhỏ nhất của bthức : S = ( 1 + 1/a ) ( a + 1/b )
Tính gtrị bthức: 2/√3-1 - 2/√3+1
\(=\sqrt{3}+1-\left(\sqrt{3}-1\right)=2\)
1) Tìm số nguyên m để:
a) Giá trị của biểu thức m- 1 chia hết cho giá trị của biểu thức 2m+ 1.
b) l 3m- 1l < 3
2) Chứng minh rằng \(3^{n+2}-2^{n+4}+3^n+2^n\)chia hết cho 30 với mọi n nguyên dương
a) Lấy 2m+1-2(m-1)\(⋮\)2m+1.
Tìm các giá trị của 2m+1 rồi tìm m
b) Theo đề bài => /m/<2 để /3m-1/<3
a)m-1 chia hết 2m+1
suy ra 2(m-1) chia hết cho 2m+1
\(\Rightarrow\)2m-2\(⋮\)2m+1
\(\Rightarrow\)2(m-1+1)-2\(⋮\)2m+1
Tính gtrị bthức sau: a) 1/2+√3 +1/2-√3
\(=2-\sqrt{3}+2+\sqrt{3}=4\)
\(=\dfrac{1}{2}+\dfrac{1}{2}+\sqrt{3}-\sqrt{3}=1\)
giải giúp mình vs
1.cho x,y là 2 số khác nhau thỏa mãn
a. x^2-y= y^2-x tính gtrị của bthức A=x^2+2xy+y^2-3x-3y
b. biết -2x^2+2x^2=5xy và o<x<2y .tính gtrị M=x+y/ x-y
2 cho x thuộc Z
cm rằng M=(a+1)(a+2)(a+3)(a+4)+1 là bình phương của một số nguyên( M là một số Ư)