Cho tam giác ABC cân tại A, góc ABC =50 độ. Kẻ AM vuông góc BC.
a) Tính góc BAC?
b) CM: Tam giác AMB=tam giác AMC
c) Lấy I tùy ý thuộc AM. CM: Tam giác IBC cân
d) Qua I, vẽ d vuông với AM, d cắt AB,AC lần lượt tại P,Q.So sánh PQ và BC.
Cho tam giác ABC cân tại A . Tia phân giác BAC cắt cạnh BC tại M
a) Chứng minh tam giác AMB và tam giác AMC
b) Kẻ ME vuông góc với AB (E thuộc AB) , kẻ MF vuông góc với AC (F thuộc AC).CM : tam giác AEF
c) CM : AM vuông góc EF
d) Qua B kẻ đường thẳng song song với AC cắt đường thẳng FM tại I . CM : BE = BI
Vẽ hình nữa nhé
Cho tam giác ABC cân tại A. Phân giác AM (M thuộc BC), AB = 5 cm, BC = 6 cm.
a) Chứng minh tam giác AMB bằng tam giác AMC.
b) Chứng minh: AM vuông góc với BC.
c) Tính AM.
d) Qua B vẽ đường thẳng a vuông góc với AC cắt AM tại H. Chứng minh: CH vuông góc với AB.
a) Xét tam giác AMB và AMC có:
AM chung
AB=AC (tam giác ABC cân tại A)
\(\widehat{A_1}=\widehat{A_2}\)(AM là phân giác)
=> \(\Delta AMB=\Delta AMC\left(cgc\right)\)(đpcm)
b) Có tam giác ABC cân tại A (gt); AM là trung tuyến tam giác ABC
Vì trong tam giác cân đường trung tuyến trùng với đường cao
=> AM là đường cao tam giác ABC
=> AM _|_ BC (đpcm)
Bài làm
a) Xét tam giác AMB và tam giác AMC có:
^MAB = ^MAC ( Do AM phân giác )
AB = AC ( Do ∆ABC cân )
^B = ^C ( Do ∆ABC cân )
=> ∆AMB = ∆AMC ( g.c.g )
b) Cách 1: Vì ∆AMB = ∆AMC ( cmt )
=> ^AMB = ^AMC
Mà ^AMB + ^AMC = 180° ( hai góc kề bù )
=> ^AMB = ^AMC = 180°/2 = 90°
=. AM vuông góc với BC.
Cách 2: Vì tam giác ABC cân tại A
Mà AM là tia phân giác
=> AM đồng thời là đường cao.
=> AM vuông góc với BC .
c) Vì ∆ABC cân tại A
Mà AM vừa là đường phân giác, vừa là đường cao.
=> AM là đường trung tuyến.
=> BM = MC
Mà BM + MC = BC = 6
=> BM = MC = 6/2 = 3 ( cm )
Xét tam giác AMB vuông tại M có:
Theo định lí Pytago có:
AB² = AM² + BM²
=> AM² = AB² - BM²
Hay AM² = 5² - 3²
=> AM² = 25 - 9
=> AM² = 16
=> AM = 4 ( cm )
d) Xét tam giác ABC có:
AM vuông góc với BC
AH vuông góc với AC
Mà AM cắt AH tại H
=> H là trực tâm.
=> CH vuông góc với AB . ( Đpcm )
Cho tam giác cân ABC cân tại A. Tia phân giác của góc BAC cắt cạnh BC
tại M.
1) Chứng minh tam giác AMB = tam giác AMC.
2) a- Biết góc BAC = 500. Tính góc ABC và góc ACB.
b- Biết BC = 6 cm; AM = 4 cm. Tính độ dài AB, AC?
3) Kẻ ME vuông góc AB tại E, MF vuông góc AC tại F. Chứng minh tam giác AEF cân.
4) Kẻ EI vuông góc BC tại I. Gọi K là giao của đường thẳng EI và đường thẳng AC. Chứng
minh A là trung điểm của đoạn KF.
1: Xét ΔAMB và ΔAMC có
AB=AC
\(\widehat{BAM}=\widehat{CAM}\)
AM chung
Do đó:ΔAMB=ΔAMC
2:
a: \(\widehat{ABC}=\widehat{ACB}=\dfrac{180^0-50^0}{2}=65^0\)
b: BC=6cm nên BM=3cm
=>AB=AC=5cm
3: Xét ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
\(\widehat{EAM}=\widehat{FAM}\)
Do đó: ΔAEM=ΔAFM
Suy ra: AE=AF
hay ΔAEF cân tại A
độ, AB= AC, AM là tia phân giác của góc BAC( M thuộc BC).
a, CM: tam giác ABM= tam giác ACM.
b, CM: AM vuông góc với BC. Tính số đo góc ABM.
c, Vẽ BH vuông góc với AC tại H, CK vuông góc với AB tại K. Gọi I là giao điểm của BH và CK. CMR: BH= CK, BI= CI.
d, CM 3 điểm A,M,I thẳng hàng.
cho tam giác a bc có ab=ac phân giác góc a cắt bc tại m a)cm : tam giác amb= amc
c) gọi i thuộc am đường thẳng ci cắt ab tại k vẽ kh vuông bc cm) góc bac = 2bkh
d) với điều kiện nào của tam giác abc thì bkh= 30 độ
cho tam giác abc cân tại a kẻ am vuông góc bc ( m thuộc bc ) .a)biết ab = 5 cm ; am =4cm tính mb b) chứng minh tam giác abm = tam giác acm c) kẻ mi vuông góc ab( I thuộc ab ); mk vuông góc ac ( k thuộc ac ) chứng minh mi = mk d) chứng minh am vuông góc Ik ( mng giúp mik vs ạ tks nhiều , giải theo cách cấp 2 thôi nha mng lớp 7 ý ) :)))
cho tam giác ABC cân tại A. Phân giác AM( M\(\in\)BC), AB = 5cm, BC = 6cm. CMR:
a, tam giác AMB = tam giác AMC
b, AM vuông góc với BC và tính AM.
c, qua B vẽ đường thẳng a vuông góc với AC cắt AM tại H. CM tam giác BHC cân
d, CH vuông góc với AB.
help !
cần gấp!
a, vì AM là tpg của A nên BAM=CAM
xét tam giác AMB & AMC có: BAM=CAM(cmt); AB=AC( tam giác ABC cân tại A); góc B=C( tam giác ABC cân tại A)
=> tam giác AMB=AMC(g.c.g)
b,vì tam giác AMB=AMC nên góc AMB=AMC
mà AMB+AMC=1800( 2 góc kề bù)=> AMB=AMC=900=> AM vuông góc với BC
vì tam giác AMB=AMC nên BM=CM(2 cạnh tương ứng)
=> BM=CM=BC:2=3 cm
theo định lí PTG, ta có:
AM2+BM2=AB2
hay AM2= AB2- BM2
<=>AM2=52-32=16
=> AM= 4 cm.
c, xét tam giác BHM và CHM: BM=CM(cmt); góc HMB=HMC(=900); HM là cạnh chung=> tam giác BHM=CHM(c.g.c)=>HB=HC(tương ứng)
xét tam giác HBC có HB=HC(cmt) do đó tam giác HBC cân tại H.
Bài 1 : Cho tAm giác cân ABC có <BAC=120 độ. Vẽ đường cao AM ( M thuộc BC )
a) Chứng mình rằng : CM=MB và AM là tia phân giác của <BAC
b) Kẻ MD vuông góc với AB ( D thuộc AB), kẻ ME vuông góc với AC ( E thuộc AC). Chứng minh tam giác ADE cân và DE // BC.
c) Chứng minh rằng tam giác MDE đều
d) Đường vuông góc với BC kẻ từ C cắt tia BA tại F. Tính độ dài cạnh AF biết CF = 6 cm
Bài 2: Cho tam giác ABC vuông tại B, kẻ AI là tia phân giác của góc BAC, IH vuông góc với AC tại H.
a. Chứng minh tam giác ABI = tam giác AHI
b. HI cắt AB tại K. Chứng tỏ rằng BK=HC
c. Chứng minh rằng BH // KC
d. Qua C kẻ đường thẳng song song với HK, cắt AI tại O. Tìm điều kiện của tam giác ABC để tam giác CIO đều
Bài 3: Cho tam giác ABC cân tại A. Kẻ AH vuông góc với BC ( H thuộc BC)
a. Chứng minh : tam giác AHB= tam giác AHC
b. Gỉa sử AB = AC = 5cm, BC = 8cm. Tính độ dài AH
c. Trân tia đối của tai HA lấy điểm M sao cho HM - HA. chứng minh tam giác ABM cân
d. Chứng minh BM // AC