Δ ABC có góc BAC bằng 120 độ, trên tia phân giác góc BAC lấy D và E( D nằm giũa A và E) sao cho AD = AB, DE= AC. chứng minh tam ΔBEC là Δđều
Tam giác ABC có góc BAC bằng 120 độ, trên tia phân giác góc BAC lấy D và E( D nằm giũa A và E) sao cho AD = AB, DE= AC. chứng minh tam giác BEC là tam giác đều
cho tam giác ABC có A=120 độ . Trên tia phân giác của góc A lấy hai điểm D và E ( D nằm giữa A và E ) sao cho AB = AD , DE=AC . Chứng minh rằng tam giác BCE là tam giác đều
Cho tam giác ABC vuông tại A (AB < AC). Vẽ AD là tia phân giác của góc BAC (D thuộc BC). Trên đoạn AC lấy điểm H sao cho AH = AB. a) Chứng minh góc ADH = góc ADB b) Tia HD cắt AB tại E. Chứng minh : tam giác AHE = tam giác ABC và AD ^ EC c) Gọi G là trung điểm của ED. Tia AD cắt CG tại X. Chứng minh 3.DX < 2.DC
a) Xét tam giác ABD và tam giác AHD có:
AB = AH ( gt )
^BAD = ^CAD ( Do AD phân giác )
AD chung
=> Tam giác ABD = tam giác AHD ( c.g.c )
=> ^ABD = ^AHB ( hai góc tương ứng )
b) Xét tam giác AHE và tam giác ABC có:
AB = AH ( gt )
^ABC chung
^ABD = ^AHD ( cmt )
=> Tam giác AHE = tam giác ABC ( g.c.g )
Cho tam giác ABC vuông tại A (AB < AC). Vẽ AD là tia phân giác của góc BAC (D thuộc BC). Trên đoạn AC lấy điểm H sao cho AH = AB.
a) Chứng minh góc ADH = góc ADB
b) Tia HD cắt AB tại E. Chứng minh : tam giác AHE = tam giác ABC và AD ^ EC
c) Gọi G là trung điểm của ED. Tia AD cắt CG tại X. Chứng minh 3.DX < 2.DC
a: Xét ΔADH và ΔADB có
AD chung
\(\widehat{DAH}=\widehat{DAB}\)
AH=AB
Do đó: ΔADH=ΔADB
=>\(\widehat{ADH}=\widehat{ADB}\) và \(\widehat{ABD}=\widehat{AHD}\)
Xét ΔAHE vuông tại A và ΔABC vuông tại A có
AH=AB
\(\widehat{AHE}=\widehat{ABC}\)
Do đó: ΔAHE=ΔABC
=>AE=AC
=>ΔAEC cân tại A
Ta có: ΔAEC cân tại A
mà AD là đường phân giác
nên AD\(\perp\)EC
Cho tam giác ABC vuông tại A (AB < AC). Vẽ AD là tia phân giác của góc BAC (D thuộc BC). Trên đoạn AC lấy điểm H sao cho AH = AB.
a) Chứng minh góc ADH = góc ADB
b) Tia HD cắt AB tại E. Chứng minh : tam giác AHE = tam giác ABC và AD ^ EC
c) Gọi G là trung điểm của ED. Tia AD cắt CG tại X. Chứng minh 3.DX < 2.DC
Cho tam giác ABC có góc B= 90. Tia phân giác góc A cắt cạnh BC tại D. Trên AC lấy điểm E sao cho AE= AB. a)Chứng minh: BD= DE. b)So sánh góc EDC và góc BAC. c)Chứng minh AD vuông góc với BE.
Cho tam giác ABC có AB nhỏ hơn AD là tia phân giác của góc BAC trên cạnh AC lấy điểm E sao cho AB bằng AE Trên tia đối của tia BA lấy điểm F sao cho BF=EC chứng minh rằng a) DB=DE b) tam giác DBF bằng tam giác DEC và EDF thẳng hàng c)BE song song FC d)tam giác ABC=tam giác AEF
a: Xét ΔABD và ΔAED có
AB=AE
góc BAD=góc EAD
AD chung
=>ΔABD=ΔAED
=>DB=DE
b: Xét ΔDBF và ΔDEC có
DB=DE
góc DBF=góc DEC
BF=EC
=>ΔDBF=ΔDEC
=>góc BDF=góc EDC
=>góc BDF+góc BDE=180 độ
=>F,D,E thẳng hàng
c: Xét ΔAFC có AB/BF=AE/EC
nên BE//CF
d: Xét ΔABC và ΔAEF có
AB=AE
góc BAC chung
AC=AF
=>ΔABC=ΔAEF
1.Cho tam giác ABC có góc A =120 độ.Kẻ Ax là tia phân giác góc A.Trên tia Ax lấy điểm E sao cho AE=AB+AC.Lấy điểm D sao cho AD=AB
Chứng minh rằng;
a,tam giác ABC =tam giác DBE
b,tam giác BCE là tam giác đều
2.Cho tam giác ABC nhọn có AB<AC,góc BAC < 90 độ.Đường trung trực của BC cắt tia phân giác của góc BAC tại I.Kẻ ID vuông góc với AB tại D,kẻ IE vuông góc với AC tại E
Chứng minh rằng :
tam giác EFC=tam giác ECI
Cho tam giác ABC . Trên tia đối của tia AB lấy D sao cho AB = AD , trên tia đối của AC lấy điểm E sao cho AE = AC a) Chứng minh BC = DE ; b) AI , Ạ . Theo thứ tự là tia phân giác của góc BAC và góc DAE . So sánh góc BAI với góc DAJ ; c) Chứng minh rằng I , A , J là 3 điểm thẳng hàng
Giúp mình với các bạn ơi