Cho dãy số: ... , 49, 53, 57.
Tìm số hạng đầu tiên của dãy số đó, biết dãy đó có 13 số hạng.
cho dãy số : ... ; 492 ; 495 ; 498 tìm số hạng đầu tiên của dãy số đó biết dãy số đó có 100 số hạng
So dau tien cua day la
498-(100-1)*3=201
Đáp số:201
tk cho mình nhé
mình ít điểm hỏi đáp lắm
thông cảm cho mình
Dãy số này là dãy số cách đều tăng dần 3. Số cuối là 498
Gọi số đầu là x. Ta có : (498 - x) : 3 + 1 = 100
(498 - x) : 3 = 100 - 1
(498 - x) : 3 = 99
(498 - x) = 99 x 3
498 - x = 297
x = 498 - 297
x = 201
số đầu = số cuối - (số số hạng-1) x hiệu hai số liên tiếp.
suy ra ta có:495-(100-1)x3=201
Cho dãy các số chẵn liên tiếp tăng dần. Biết trung bình cộng của 13 số hạng đầu tiên của dãy bằng 24. Tìm số hạng thứ 30 của dãy số đó.
Trung bình cộng của 13 số chẵn liên tiếp là trung bình cộng của số thứ nhất và số thứ mười ba của dãy số.
Tổng của số thứ nhất và số thứ mười ba là:
24 x 2 = 48
Hiệu của số thứ nhất và số thứ mười ba của dãy số là:
2 x (13 - 1) = 24
Ta có sơ đồ:
Số thứ nhất của dãy số là:
(48 - 24): 2 = 12
Số thứ ba mươi của dãy số là:
2 x (30 - 1) + 12 = 70
Đáp số:
cho dãy số ....;492;495;498 .tìm số hạng đầu tiên của dãy số đó biết dãy số đó có 100 số hạng ( ghi chú:làm bài giải ra nhé)
thanh ơi bạn không tự nghĩ bạn đánh câu hỏi lên olm
Số hạng đầu tiên là 201
k mk nha mk chắc đó bài này mk làm trên violympic rùi
Cho dãy số 10 ; 13 ; 16 ; 19 ;... a)Viết tập hợp A gồm 6 số hạng liên tiếp của dãy số đó, bắt đầu từ số hạng thứ tư. b)Tính tổng 200 số hạng đầu tiên của dãy số đó. c)Số 177 có thuộc dãy số đó không? Tại sao?
Bài 6 (1,0 điểm) Tìm một số tự nhiên có bốn chữ số, chữ số hàng đơn vị là 9. Nếu chuyển chữ số hàng đơn vị lên đầu thì được một số mới lớn hơn số đã cho 2889 đơn vị.
Bài 5:
a) Ta có quy luật của dãy số là các số hạng cách nhau 3 đơn vị
\(\Rightarrow A=\left\{19;22;25;28;31;34\right\}\)
b) Số hạng thứ 200 của dãy số trên là:
\(1+\left(200-1\right)\times3=598\)
Tổng 200 số hạng đầu tiên của dãy là:
\(\left(598+1\right)\cdot100:2=29950\)
c) Theo quy luật thì các số hạng trong dãy số chia cho 3 sẽ dư 1
\(\Rightarrow177:3=59\) chia hết cho 3 nên không nằm trong dãy số
1. Hãy viết 55 thành tổng của các số tự nhiên liên tiếp.
2.Cho dãy số gồm 11 số hạng có tổng là 176. Biết hiệu của số hạng đầu tiên và số hạng cuối cùng là 30. Hãy viết dãy số đó.
3.Cho dãy số tự nhiên. Các số đó đều có tận cùng là 2. Các số đó chia hết cho 4. Tìm số hạng thứ 112 rồi tính tổng.
4.Tinhs tổng 50 số hạng đầu tiên của dãy sau;2, 6, 12, 20, 30, ...
1. 55= 1+2+3+...+9+10
2. 1,2,3,...30,31
1. Hãy viết 55 thành tổng của các số tự nhiên liên tiếp. 2.Cho dãy số gồm 11 số hạng có tổng là 176. Biết hiệu của số hạng đầu tiên và số hạng cuối cùng là 30. Hãy viết dãy số đó. 3.Cho dãy số tự nhiên. Các số đó đều có tận cùng là 2. Các số đó chia hết cho 4. Tìm số hạng thứ 112 rồi tính tổng. 4.Tinhs tổng 50 số hạng đầu tiên của dãy sau;2, 6, 12, 20, 30, ...
1. Phương pháp 1: ( Hình 1)
Nếu thì ba điểm A; B; C thẳng hàng.
2. Phương pháp 2: ( Hình 2)
Nếu AB // a và AC // a thì ba điểm A; B; C thẳng hàng.
(Cơ sở của phương pháp này là: tiên đề Ơ – Clit- tiết 8- hình 7)
3. Phương pháp 3: ( Hình 3)
Nếu AB a ; AC A thì ba điểm A; B; C thẳng hàng.
( Cơ sở của phương pháp này là: Có một và chỉ một đường thẳng
a’ đi qua điểm O và vuông góc với đường thẳng a cho trước
- tiết 3 hình học 7)
Hoặc A; B; C cùng thuộc một đường trung trực của một
đoạn thẳng .(tiết 3- hình 7)
4. Phương pháp 4: ( Hình 4)
Nếu tia OA và tia OB là hai tia phân giác của góc xOy
thì ba điểm O; A; B thẳng hàng.
Cơ sở của phương pháp này là:
Mỗi góc có một và chỉ một tia phân giác .
* Hoặc : Hai tia OA và OB cùng nằm trên nửa mặt phẳng bờ chứa tia Ox ,
thì ba điểm O, A, B thẳng hàng.
5. Nếu K là trung điểm BD, K’ là giao điểm của BD và AC. Nếu K’
Là trung điểm BD thì K’ K thì A, K, C thẳng hàng.
(Cơ sở của phương pháp này là: Mỗi đoạn thẳng chỉ có một trung điểm)
C. Các ví dụ minh họa cho tùng phương pháp:
Phương pháp 1
Ví dụ 1. Cho tam giác ABC vuông ở A, M là trung điểm AC. Kẻ tia Cx vuông góc CA
(tia Cx và điểm B ở hai nửa mặt phẳng đối nhau bờ AC). Trên tia Cx lấy điểm
D sao cho CD = AB.
Chứng minh ba điểm B, M, D thẳng hàng.
Gợi ý: Muốn B, M, D thẳng hàng cần chứng minh
Do nên cần chứng minh
BÀI GIẢI:
AMB và CMD có:
AB = DC (gt).
MA = MC (M là trung điểm AC)
Do đó: AMB = CMD (c.g.c). Suy ra:
Mà (kề bù) nên .
Vậy ba điểm B; M; D thẳng hàng.
Ví dụ 2. Cho tam giác ABC. Trên tia đối của AB lấy điểm D mà AD = AB, trên tia đối
tia AC lấy điểm E mà AE = AC. Gọi M; N lần lượt là các điểm trên BC và ED
sao cho CM = EN.
Chứng minh ba điểm M; A; N thẳng hàng.
Gợi ý: Chứng minh từ đó suy ra ba điểm M; A; N thẳng hàng.
BÀI GIẢI (Sơ lược)
ABC = ADE (c.g.c)
ACM = AEN (c.g.c)
Mà (vì ba điểm E; A; C thẳng hàng) nên
Vậy ba điểm M; A; N thẳng hàng (đpcm)
BÀI TẬP THỰC HÀNH CHO PHƯƠNG PHÁP 1
Bài 1: Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối
của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và
CD.
Chứng minh ba điểm M, A, N thẳng hàng.
Bài 2: Cho tam giác ABC vuông ở A có . Vẽ tia Cx BC (tia Cx và điểm A ở
phía ở cùng phía bờ BC), trên tia Cx lấy điểm E sao cho CE = CA. Trên tia đối của tia
BC lấy điểm F sao cho BF = BA.
Chứng minh ba điểm E, A, F thẳng hàng.
Bài 3: Cho tam giác ABC cân tại A, điểm D thuộc cạnh AB. Trên tia đối của tia CA lấy điểm
E sao cho CE = BD. Kẻ DH và EK vuông góc với BC (H và K thuộc đường thẳng BC)
Gọi M là trung điểm HK.
Chứng minh ba điểm D, M, E thẳng hàng.
Bài 4: Gọi O là trung điểm của đoạn thẳng AB. Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ
Hai tia Ax và By sao cho .Trên Ax lấy hai điểm C và E(E nằm giữa A và C),
trên By lấy hai điểm D và F ( F nằm giữa B và D) sao cho AC = BD, AE = BF.
Chứng minh ba điểm C, O, D thẳng hàng , ba điểm E, O, F thẳng hàng.
Bài 5.Cho tam giác ABC . Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC, vẽ các
đường thẳng song song AB và AC, các đường thẳng này cắt xy theo thứ tự tại D và E.
Chứng minh các đường thẳng AM, BD, CE cùng đi qua một điểm.
PHƯƠNG PHÁP 2
Ví dụ 1: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của các cạnh AC, AB. Trên
Các đường thẳng BM và CN lần lượt lấy các điểm D và E sao cho M là trung
điểm BD và N là trung điểm EC.
Chứng minh ba điểm E, A, D thẳng hàng.
Hướng dẫn: Xử dụng phương pháp 2
Ta chứng minh AD // BC và AE // BC.
BÀI GIẢI.
BMC và DMA có:
MC = MA (do M là trung điểm AC)
(hai góc đối đỉnh)
MB = MD (do M là trung điểm BD)
Vậy: BMC = DMA (c.g.c)
Suy ra: , hai góc này ở vị trí so le trong nên BC // AD (1)
Chứng minh tương tự : BC // AE (2)
Điểm A ở ngoài BC có một và chỉ một đường thẳng song song BC nên từ (1)
và (2) và theo Tiên đề Ơ-Clit suy ra ba điểm E, A, D thẳng hàng.
Ví dụ 2: Cho hai đoạn thẳng AC và BD cắt nhau tai trung điểm O của mỗi đoạn. Trên tia
AB lấy lấy điểm M sao cho B là trung điểm AM, trên tia AD lấy điểm N sao cho
D là trung điểm AN.
số hàng đầu tiên là 3
số hạng đầu tiên là 3 nha
Cho dãy số: 1.4 ; 4.7; 7.10;......
Nêu quy luật của dãy số trên
Viết tập B gồm 10 số hạng đầu tiên của dãy số đó
Tìm số hạng thứ 100 của dãy số đó là bao nhiêu
Tìm số hạng thứ 2022 của dãy số trên
Tính tổng 100 số hạng đầu tiên của dãy số trên
Giúp mình với !
.....51 57 63
tìm số hạng đầu tiên của dãy số đó
Nếu số hạng đầu tiên có 1 chữ số thì số đó là số dư của phép chia sau :
63 : (57 - 51) = 10 dư 3
Nếu số hạng đầu tiên có 2 chữ số thì số đó là :
3 + 6 x 2 = 15
Số hạng đầu tiên là: 45
Qui luật của dãy số là: 57 - 51 = 6 (số)