Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
14 tháng 9 2023 lúc 16:39

a) Nếu \(\Delta A'B'C' = \Delta ABC\) thì tam giác \(A'B'C'\) đồng dạng với tam giác \(ABC\). Vì hai tam giác bằng nhau có các góc tương ứng bằng nhau và các cạnh tương ứng bằng nhau.

Khi đó, \(\left\{ \begin{array}{l}\widehat A = \widehat {A'};\widehat B = \widehat {B'};\widehat C = \widehat {C'}\\\frac{{A'B'}}{{AB}} = \frac{{A'C'}}{{AC}} = \frac{{B'C'}}{{BC}} = 1\end{array} \right.\). Vậy \(\Delta A'B'C'\backsim\Delta ABC\) và tỉ số đồng dạng là 1.

b) Vì \(\Delta A'B'C'\backsim\Delta ABC\) theo tỉ số đồng dạng là \(k\) nên tỉ số đồng dạng là: \(\frac{{A'B'}}{{AB}} = \frac{{A'C'}}{{AC}} = \frac{{B'C'}}{{BC}} = k\).

Khi đó, \(\Delta ABC\backsim\Delta A'B'C'\) đồng dạng với tỉ số đồng dạng là: \(\frac{{AB}}{{A'B'}} = \frac{{AC}}{{A'C'}} = \frac{{BC}}{{B'C'}} = \frac{1}{k}\).

Vậy \(\Delta ABC\backsim\Delta A'B'C'\)theo tỉ số \(\frac{1}{k}\).

Hoàng Như Trâm
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 6 2022 lúc 21:27

Bài 1:

Để ΔABC=ΔDEF thì AB=EF; AC=DF

hoặc cũng có thể là BC=EF và \(\widehat{B}=\widehat{E}\)

Bài 2: 

a: Xét ΔABH vuông tại H và ΔA'B'H' vuông tại H' có

\(\widehat{B}=\widehat{B'}\)

Do đó: ΔABH\(\sim\)ΔA'B'H'

b: AH/A'H'=AB/A'B'=k

Hàn Tiểu Hy
Xem chi tiết
Nguyễn Thiên Phong
Xem chi tiết
IS
24 tháng 3 2020 lúc 20:38

Ta có

\(\Delta A'B'C'~\Delta A"B"C"\)theo tỉ số đồng dạng \(k_1\Rightarrow A'B'=k_1A"B"\)

\(\Delta A"B"C"~\Delta A'B'C\)theo tỉ số \(k_2=>A"B"=k_2A"B"=>AB=\frac{A"B"}{k_2}\)

từ đó suy ra

\(\frac{A'B'}{AB}=\frac{k_1A"B"}{\frac{A"B"}{k_2}}=k_1k_2\Leftrightarrow\Delta A'B'C~\Delta ABC\)theo tỉ số \(k_1k_2\)

Khách vãng lai đã xóa
Nguyễn Bảo Anh
Xem chi tiết
Tiểu Hắc Hắc
6 tháng 1 2019 lúc 20:58

Hai tam giác bằng nhau

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
14 tháng 9 2023 lúc 16:50

a) Xét tam giác \(A'B'C'\) ta có:

\(\widehat {A'} + \widehat {B'} + \widehat {C'} = 180^\circ \)

Thay số: \(79^\circ  + \widehat {B'} + 41^\circ  = 180^\circ \)

\( \Rightarrow \widehat {B'} = 180^\circ  - 79^\circ  - 41^\circ  = 60^\circ \)

 Xét \(\Delta ABC\) và \(\Delta A'B'C'\) ta có:

\(\widehat A = \widehat {A'} = 79^\circ \) (giả thuyết)

\(\widehat B = \widehat {B'} = 60^\circ \) (chứng minh trên)

Do đó, \(\Delta ABC\backsim\Delta A'B'C'\) (g.g)

b) Vì \(\Delta ABC\backsim\Delta A'B'C'\) nên \(\frac{{AB}}{{A'B'}} = \frac{{BC}}{{B'C'}}\) (các cạnh tương ứng có cùng tỉ lệ)

Thay số, \(\frac{4}{6} = \frac{6}{{B'C'}} \Rightarrow B'C' = \frac{{6.6}}{4} = 9\)

Vậy \(B'C' = 9\).

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
14 tháng 9 2023 lúc 16:44

a)  Ta có: \(\Delta ABC\backsim\Delta A'B'C'\) thì \(\left\{ \begin{array}{l}\widehat A = \widehat {A'};\widehat B = \widehat {B'};\widehat C = \widehat {C'}\\\frac{{A'B'}}{{AB}} = \frac{{A'C'}}{{AC}} = \frac{{B'C'}}{{BC}} = k\end{array} \right.\).

b) Xét tam giác \(DEF\) có:

\(\widehat D + \widehat E + \widehat F = 180^\circ \) (tổng ba góc trong một tam giác).

Ta có: \(\widehat D = 78^\circ ;\widehat E = 57^\circ \) thay số ta được

\(78^\circ  + 57^\circ  + \widehat F = 180^\circ  \Rightarrow \widehat F = 180^\circ  - 78^\circ  - 57^\circ  = 45^\circ \)

Ta có: \(\Delta DEF\backsim\Delta D'E'F' \Rightarrow \widehat D = \widehat {D'};\widehat E = \widehat {E'};\widehat F = \widehat {F'}\) (các góc tương ứng bằng nhau)

Do đó,  \(\widehat D = \widehat {D'} = 78^\circ ;\widehat F = \widehat {F'} = 45^\circ \).

c) Ta có  \(\Delta MNP\backsim\Delta M'N'P' \Rightarrow \frac{{MN}}{{M'N'}} = \frac{{MP}}{{M'P'}} = \frac{{NP}}{{N'P'}}\) (các cặp cạnh tương ứng có cùng tỉ lệ).

Với \(MP = 10;NP = 6;M'N' = 15;N'P' = 12\) thay vào ta được:

\( \Rightarrow \left\{ \begin{array}{l}\frac{{MN}}{{15}} = \frac{1}{2}\\\frac{{10}}{{M'P'}} = \frac{1}{2}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}MN = \frac{{15.1}}{2} = 7,5\\M'P' = \frac{{10.2}}{1} = 20\end{array} \right.\).

Vậy \(MN = 7,5;M'P' = 20\).

그녀는 숙이다
Xem chi tiết
그녀는 숙이다
4 tháng 4 2019 lúc 10:02

lolangai giúp tuj zớiiii

Bùi Thị Như Mai
Xem chi tiết