1) Tìm các số nguyên n để A=n^2+n+1 là số chính phương. 2) Tìm số nguyên tố a và b sao cho a^2-2b^2=1.
Tìm tất cả các số nguyên dương n để 3n + 427 là số chính phương?
Có SCP chia 8 dư 0;1;40;1;4.
Dễ dàng có: n=2kn=2k
(3k)2+427=t2⇔(t−3k)(t+3k)=6.71
Tìm số tự nhiên n để n + 35 và n - 4 đều là các số chính phương
tìm các số tự nhiên n để số 3n+19 là số chính phương
1) CMR các số sau là hợp số:
a) \(4^{20}-1\) .
b) 1000001.
2) Tìm số tự nhiên n để giá trị của biểu thức sau là số nguyên tố: \(12n^2-5n-25\) .
3) CMR: các số sau không là số chính phương
\(A=222...2224\) (có 50 chữ số 2)
\(B=444...444\) (100 chữ số 4)
4) Tìm số nguyên tố P để 4P+1 là số chính phương.
tìm số nguyên n để n+1995 và n+2014 đều là số chính phương
Lời giải:
Đặt $n+1995=a^2, n+2014=b^2$ với $a,b\in\mathbb{N}$
Khi đó:
$(n+2014)-(n+1995)=b^2-a^2$
$\Leftrightarrow 19=b^2-a^2=(b-a)(b+a)$
Vì $b,a$ là 2 số tự nhiên nên $b+a> b-a$. Vì $b+a>0, (b+a)(b-a)=19>0$ nên $b-a>0$
Suy ra $b+a=19; b-a=1$
$\Rightarrow b=10$
$\Rightarrow n+2014=b^2=10^2=100\Rightarrow n=-1914$
tìm n để n2 +2006 là số chính phương
số chính phương là số có số mũ là 2
Bạn ơi bài này phải cho thêm điều kiện n thuộc Z
Đặt n^2+2006 = k^2 ( k thuộc N sao)
<=> -2006 = n^2-k^2 = (n-k).(n+k)
<=> n-k thuộc ước của -2006 ( vì n thuộc Z , k thuộc N sao nên n-k và n+k đểu thuộc Z)
Mà k thuộc N sao nên n-k < n+k
Từ đó, bạn tự giải bài toán nhưng nhớ kết hợp cả điều kiện n-k<n+k
Vì n2 là số chính phương
\(\Rightarrow\) n2 chia cho 4 dư 0 hoặc 1
Mà 2006 chia cho 4 dư 2
\(\Rightarrow\) n2 + 2006 chia cho 4 dư 2 hoặc 3
\(\Rightarrow\) n2 + 2006 không là số chính phương (vì số chính phương chia cho 4 dư 0 hoặc 1)
\(\Rightarrow\) Không có số n thỏa mãn đề bài.
1. Tìm n thuộc N để(n+3)(n+4)là một số chính phương
2. Tìm số nguyên tố p để
a)p+10 và p+20 đều là số nguyên tố
b)p+2 và p+94 đều là số nguyên tố
c)p+6;p+8;p+12;p+14 đều là số nguyên tố
3. Cho p1 bé hơn p2 là hai số nguyên tố lẻ liên tiếp
CMR:(p1+p2) :2 là hợp số
2) Vì p là số nguyên tố nên ta xét các trường hợp sau:
a) Với p = 2 thì p + 10 = 2 + 10 = 12 là hợp số (loại), tương tự với p + 20 cũng là hợp số.
Với p = 3 thì p + 10 = 3 + 10 = 13 là số nguyên tố (nhận); p + 20 = 3 + 20 = 23 là số nguyên tố (nhận)
Vì p là số nguyên tố và p > 3 nên p có dạng 3k + 1; 3k + 2
Với p = 3k + 1 => p + 10 = 3k + 1 + 10 = 3k + 11
Tìm các số nguyên x để:
\(N=x^2-6x-6\) là số chính phương
Giả sử:
x² + x + 6 = k² ( k nguyên dương)
\(\text{=> 4x² + 4x + 24 = 4k² }\)
\(\text{=> -(2x+1)² + 4k² = 23 }\)
\(\text{=>(-2k+2x+1)(2k+2x+1) = -23 }\)
Do x, k đều nguyên và k nguyên dương nên 2x + 2k + 1 > 2x +1-2k do đó chỉ xảy ra các trường hợp
TH1: -2k+2x+1 = -1 và 2k+2x+1 = 23
=> x = 5 và k = 6
TH2: -2k+2x+1 = -23 và 2k + 2x +1= 1
=> x = - 6 va k = 6 (loại vì \(k\in N\))
Vậy x = 5
cho A = 1/2-n( n là một số nguyên )
a) Số nguyên n phải có điều kiện gì để A là phân số?
b) Tìm các giá trị của n để A có giá trị là một số nguyên
a, De A la phan so thi 2-n # 0 suy ra n # 2
Vay n # 2 thi A la phan so
b, vi n la so nguyen nen suy ra 2-n la so nguyen
suy ra 1 chia het cho 2 - n
suy ra 2-n thuoc uoc cua (1)
suy ra 2 - n thuoc { 1 , -1 }
suy ra n thuoc { 1 , 3 }
Vay n thuoc { 1 , 3 }
* Chu y :
Cac tu ( thuoc , uoc , suy ra , chia het ) khi ban trinh bay thi ban viet ki hieu cho minh nhe
tìm n để n^2+2006 là 1 số chính phương
Giả sử n^2 + 2006 = m^2 (m,n la số nguyên)
Suy ra n^2 - m^2 =2006
<==> ( n - m )( n + m ) = 2006
Gọi a = n - m, b = n + m ( a,b cũng là số nguyên)
Vì tích của a và b bằng 2006 la một số chẵn, suy ra trong 2 số a và b phải có ít nhất 1 số chẵn (1)
Mặt khác ta có: a + b = (n - m) + (n + m) = 2n là 1 số chẵn
==> a và b phải cùng chẵn hoặc cùng lẻ(2)
Từ (1) và (2) suy ra a và b đều là số chẵn
Suy ra a = 2k , b= 2l ( với k,l là số nguyên)
Theo như trên ta có a.b = 2006 hay 2k.2l = 2006 hay 4.k.l = 2006
Vì k,l là số nguyên nên suy ra 2006 phải chia hết cho 4 ( điều này vô lý, vì 2006 không chia hết cho 4)
Vậy không tồn tại số nguyên n thỏa mãn đề bài đã cho.(đpcm)