Chứng minh x^2+x+1>0 và x^2- 2x+4>0
Bài 1 giải các pt sau và diễn tập nghiệm trên trục số a) 2x-6>0 b) -3x+9>0 c)3(x-1)+5>(x+1)+3 d)x/3 - 1/2>x/6 Bài 2:a)cho a>b chứng minh 3a+7>3b+7 b)cho a >b chứng minh a+3>b+1 c) cho 5a -1>5b-1 hãy so sánh a và b Bài 3: 2x(x+5)=0 b) X^2-4=0 d) (x-5)(2x+1)+(x-5)(x+6)=0 Ở bài 1 câu a có dấu hoặc bằng nữa nha bài 2 câu c cũng vậy
3:
a: =>x=0 hoặc x+5=0
=>x=0 hoặc x=-5
b: =>x^2=4
=>x=2 hoặc x=-2
c: =>(x-5)(2x+1+x+6)=0
=>(x-5)(3x+7)=0
=>x=5 hoặc x=-7/3
1.
a. 2x - 6 > 0
\(\Leftrightarrow\) 2x > 6
\(\Leftrightarrow\) x > 3
S = \(\left\{x\uparrow x>3\right\}\)
b. -3x + 9 > 0
\(\Leftrightarrow\) - 3x > - 9
\(\Leftrightarrow\) x < 3
S = \(\left\{x\uparrow x< 3\right\}\)
c. 3(x - 1) + 5 > (x - 1) + 3
\(\Leftrightarrow\) 3x - 3 + 5 > x - 1 + 3
\(\Leftrightarrow\) 3x - 3 + 5 - x + 1 - 3 > 0
\(\Leftrightarrow\) 2x > 0
\(\Leftrightarrow\) x > 0
S = \(\left\{x\uparrow x>0\right\}\)
d. \(\dfrac{x}{3}-\dfrac{1}{2}>\dfrac{x}{6}\)
\(\Leftrightarrow\dfrac{2x}{6}-\dfrac{3}{6}>\dfrac{x}{6}\)
\(\Leftrightarrow2x-3>x\)
\(\Leftrightarrow2x-3-x>0\)
\(\Leftrightarrow x-3>0\)
\(\Leftrightarrow x>3\)
\(S=\left\{x\uparrow x>3\right\}\)
2.
a.
Ta có: a > b
3a > 3b (nhân cả 2 vế cho 3)
3a + 7 > 3b + 7 (cộng cả 2 vế cho 7)
b. Ta có: a > b
a > b (nhân cả 2 vế cho 1)
a + 3 > b + 3 (cộng cả 2 vế cho 3) (1)
Ta có; 3 > 1
b + 3 > b + 1 (nhân cả 2 vế cho 1b) (2)
Từ (1) và (2) \(\Rightarrow\) a + 3 > b + 1
c.
5a - 1 + 1 > 5b - 1 + 1 (cộng cả 2 vế cho 1)
5a . \(\dfrac{1}{5}\) > 5b . \(\dfrac{1}{5}\) (nhân cả 2 vế cho \(\dfrac{1}{5}\) )
a > b
3.
a. 2x(x + 5) = 0
\(\Leftrightarrow\left[{}\begin{matrix}2x=0\\x+5=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
\(S=\left\{0,-5\right\}\)
b. x2 - 4 = 0
\(\Leftrightarrow x\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
\(S=\left\{0,4\right\}\)
d. (x - 5)(2x + 1) + (x - 5)(x + 6) = 0
\(\Leftrightarrow\left(x-5\right)\left(2x+1+x+6\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(3x+7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\3x+7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{-7}{3}\end{matrix}\right.\)
\(S=\left\{5,\dfrac{-7}{3}\right\}\)
1/ Chứng minh phương trình vô nghiệm:
a) \(-16x^2-8x+4=0\)
b) \(-x^2+4x-4=0\)
2/ Giải phương trình sau:
\(\left(x^2-2x-4\right)\left(2x^2-8x-1\right)=0\)
Bài 1:
b: \(\Leftrightarrow x-2=0\)
hay x=2
CHO hai biểu thức : A=2/√x-2 và B=√x/x+1 -4√x+2/x√x -2x +√x-2(x>=0 x khác 4) Cho P=A+B chứng minh rằng P=3√x/x+1
Bài 6: Chứng minh rằng:
a) x2 – x + 1 > 0 với mọi số thực x
b) -x2+2x -4 < 0 với mọi số thực x
Bài 7: Tính nhanh giá trị biểu thức:
tại x = 18; y = 4
b) (2x + 1)2 + (2x - 1)2 - 2(1 + 2x)(1 - 2x) tại x = 100
a) x2 – x + 1
=(x2 – x + 1/4 )+3/4
=(x-1/2)2+3/4
ta có (x-1/2)2>=0
(x-1/2)2+3/4>=+3/4>0
vậy (x-1/2)2+3/4>0 với mọi số thực x
b) -x2+2x -4
= -x2+2x -1-3
=-(x2-2x +1)-3
=-(x-2)2-3
ta có (x-2)2>=0
=>-(x-2)2=<0
=>-(x-2)2-3=<-3<0
vậy -(x-2)2-3<0 với mọi số thực x
chứng minh phương trình
a) \(x^3+x-1=0\) có nghiệm
b) \(4x^4+2x^2-x-3=0\) có ít nhất 2 nghiệm thuộc khoảng (-1:1)
a: Đặt f(x)=x3+x-1
\(f\left(0\right)=0^3+0-1=-1\)
\(f\left(1\right)=1^3+1-1=1\)
Vì \(f\left(0\right)\cdot f\left(1\right)=-1< 0\)
nên f(x)=0 có ít nhất một nghiệm thuộc đoạn (-1;0)
=>Phương trình \(x^3+x-1=0\) có nghiệm
b: Đặt \(A\left(x\right)=4x^4+2x^2-x-3\)
\(A\left(-0,8\right)=4\cdot\left(-0,8\right)^4+2\cdot\left(-0,8\right)^2-\left(-0,8\right)-3=0,7184\)
\(A\left(-0,6\right)=4\cdot\left(-0,6\right)^4+2\cdot\left(-0,6\right)^2-\left(-0,6\right)-3=-1,161\)
\(A\left(0,8\right)=4\cdot0,8^4+2\cdot0,8^2-0,8-3=-0,881\)
\(A\left(1\right)=4\cdot1^4+2\cdot1^2-1-3=2\)
Vì \(A\left(-0,8\right)\cdot A\left(-0,6\right)< 0\)
nên phương trình A(x)=0 có ít nhất 1 nghiệm thuộc đoạn (-1;1)
Vì A(0,8)*A(1)<0
nên phương trình A(x)=0 có ít nhất 1 nghiệm thuộc đoạn (0,8;1)
=>phương trình \(4x^4+2x^2-x-3=0\) có ít nhất 2 nghiệm thuộc đoạn (-1;1)
Cho A={x thuộc R | ( 2x^2-1)(x+2)(x^2-2x)(x^3+5)=0 } và B={ x thuộc Z | x^3 -4x=0} chứng minh A là tập con của B
Chứng minh phương trình vô nghiệm
1. x4-x3+2x2-x+1=0
2.x4-2x3+4x2-3x+2=0
1. x\(^4\)-x\(^3\)+2x\(^2\)-x+1=0
\(\Leftrightarrow\)(x^4-x^3+x^2) +(x^2-x+1)=0
\(\Leftrightarrow\)x^2(x^2-x+1) +(x^2-x+1)=0
\(\Leftrightarrow\)(x^2-x+1)(x^2+1)=0
\(\Leftrightarrow\)\([\)(x^2-x+1/4)+3/4\(]\)(x^2+1)=0
\(\Leftrightarrow\)\([\)(x-1/2)\(^2\)+3/4\(]\)(x^2+1)=0
VÌ (x-1/2)\(^2\)+3/4>0\(\forall\)x
x^2+1>0\(\forall\)x
\(\Rightarrow\)Phương trình đã cho vô nghiệm
1)x^4 - x^3 + 2x^2 - x + 1 = 0
(x^4 + 2x^2 +1) - (x^3+x)= 0
x^4 + 2x^2 + 1 = x^3 - x
(x^2 + 1)^2 = x(x^2 + 1)
(x^2+1)(x^2+1) = x(x^2 + 1)
(x^2+1)(x^2+1) = x(x^2 + 1)
x^2+1 = x (vô lí)
==> PT vô nghiệm
2)\(\Leftrightarrow x^4-x^3-x^3+2x^2-x-2x+1+1=-2x^2\)(cộng cả hai vế cho -2x2)
\(\Leftrightarrow x^4-x^3-x^3+x^2+x^2-x-2x+1+1=-2x^2\)
\(\Leftrightarrow\left(x^4-x^3\right)-\left(x^3-x^2\right)+\left(x^2-2x+1\right)-\left(x-1\right)=-2x^2\)
\(\Leftrightarrow x^3\left(x-1\right)-x^2\left(x-1\right)+\left(x-1\right)^2-\left(x-1\right)=-2x^2\)
\(\Leftrightarrow\left(x-1\right)\left(x^3-x^2+x-1-1\right)=-2x^2\)
\(\Leftrightarrow\left(x-1\right)\left(\left(x^3-x^2\right)+\left(x-1\right)-1\right)=-2x^2\)
\(\Leftrightarrow\left(x-1\right)\left(x^2\left(x-1\right)+\left(x-1\right)-1\right)=-2x^2\)
\(\Leftrightarrow\left(x-1\right)\left(\left(x-1\right)\left(x^2+1\right)-1\right)=-2x^2\)
\(\Leftrightarrow\left(x-1\right)^2\left(x^2+1\right)-\left(x-1\right)=-2x^2\)
\(\Leftrightarrow\left(x-1\right)^2\left(x^2+1\right)=-2x^2+x-1\)
\(\mp\)Xét \(\left(x-1\right)^2\left(x^2+1\right)\)có:
(x-1)2 \(\ge\)0 với mọi x
(x2+1) \(\ge\)0 với mọi x
\(\Rightarrow\left(x-1\right)^2\left(x^2+1\right)\)\(>0\)với mọi x (1)
\(\mp\)xét \(-2x^2+x-1\)có:
\(-2x^2\le0\)với \(x\in Z\)
\(\Rightarrow-2x^2+x\le0\)
\(\Rightarrow-2x^2+x-1< 0\)với \(x\in Z\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\)PT VÔ NGHIỆM
bài 1:chứng minh rằng với mọi x ta có:
a)-x^2+4x-5<0
b)x^4+3x^2+3>0
c)(x^2+2x+3)(x^2+2x+4)+3>0
bài 2:tìm x:
a)9x^2-6x-3=0
b)x^3+9x^2+27x+19=0
c)x(x-5)(x+5)-(x+2)(x^2-2x+4)=3
Bài 1:
a)-x^2+4x-5
=-(x2-4x+5)<0 với mọi x
=>-x^2+4x-5<0 với mọi x
b)x^4+3x^2+3
\(=\left(x^2+\frac{3}{2}\right)^2+\frac{3}{4}>0\)với mọi x
=>x^4+3x^2+3>0 với mọi x
c) bn xét từng th ra
Bài 2:
a)9x^2-6x-3=0
=>3(3x2-2x-1)=0
=>3x2-2x-1=0
=>3x2+x-3x-1=0
=>x(3x+1)-(3x+1)=0
=>(x-1)(3x+1)=0
b)x^3+9x^2+27x+19=0
=>(x+1)(x2+8x+19) (dùng pp nhẩm nghiệm rồi mò ra)
Với x+1=0 =>x=-1Với x2+8x+19 =>vô nghiệmc)x(x-5)(x+5)-(x+2)(x^2-2x+4)=3
=>x3-25x-x3-8=3
=>-25x-8=3
=>-25x=1
=>x=-11/25
mk sửa 1 tí ở dấu => thứ 2 từ dưới lên là
=>-25x=11
Bài 1: Cho P=\(\frac{x^4+x^3+x+1}{x^4-x^3+2x^2-x+1}\)
Rút gọn P và chứng tỏ P không âm với mọi giá trị của x
Bài 2:Cho abc=1 và a,b,c>0
Chứng minh rằng:(a+1)(b+1)(c+1) )>=0