Cho tam giác abc cân tại a , a nhỏ hơn 90 ck vuông góc với ab tại k ,bh vuông góc với ac tại h i là giao điểm của bh và ck.CM
a,ah=ak
b,ai là tia phân giác của góc bac
c,kh//bc
Bài 3 (3,5 điểm): Cho tam giác ABC cân tại A. Kẻ BH vuông góc với AC tại H, CK vuông góc với AB tại K.
a, Chứng minh AH = AK
b, Gọi I là giao điểm của BH và CK. Chứng minh AI là tia phân giác của góc BAC
c, Chứng minh tam giác BIC là tam giác cân
d, Chứng minh KH song song với BC
Bài 4: Cho tam giác BC cân tại A. Kẻ BH vuông góc với AC tại H, CK vuông góc với AB tại K
a, Chứng minh AH = AK
b, Gọi I là giao điểm của BH và CK. Chứng minh AI là tia phân giác của góc BAC
c, Chứng minh tam giác BIC là tam giác cân
d, KH song song với BC
e, AI vuông góc với BC
a: Xét ΔABH vuông tại H và ΔACK vuông tại K có
AB=AC
\(\widehat{BAH}\) chung
Do đó: ΔABH=ΔACK
Suy ra: AH=AK
b: Xét ΔAKI vuông tại K và ΔAHI vuông tại H có
AI chung
AK=AH
Do đó: ΔAKI=ΔAHI
Suy ra: \(\widehat{KAI}=\widehat{HAI}\)
hay AI là tia phân giác của góc BAC
c: Xét ΔKBC vuông tại K và ΔHCB vuông tại H có
BC chung
KC=HB
Do đó: ΔKBC=ΔHCB
Suy ra: \(\widehat{IBC}=\widehat{ICB}\)
hay ΔIBC cân tại I
d: Xét ΔABC có AK/AB=AH/AC
nên KH//BC
e: Ta có: ΔABC cân tại A
mà AI là đường phân giác
nên AI là đường cao
Cho tam giác ABC cân tại A. Kẻ BH vuông góc với AC (H∈AC), kẻ CK vuông góc với AB (K ∈ AB)
a, CM: AH = AK
b, Gọi I là giao điểm của BH và CK. CM AI là trung trực của HK
c, Kẻ Bx vuông góc với AB tại B, gọi E là giao điểm của Bx với AC, CM BC là phân giác của góc HBE
d, So sánh CH với CE
kẻ hình với làm giúp mình với ạ
a: Xét ΔAHB vuông ạti H và ΔAKC vuông tại K có
AB=AC
góc BAH chung
=>ΔAHB=ΔAKC
=>AH=AK
b: Xét ΔAKI vuông tại K và ΔAHI vuông tại H co
AI chung
AK=AH
=>ΔAKI=ΔAHI
=>IH=IK
=>AI là trung trực của KI
c: góc EBC+góc ABC=90 độ
góc HBC+góc ACB=90 độ
góc ABC=góc ACB
=>góc EBC=góc HBC
=>BC là phân giác của góc HBE
Cho tam giác ABC cân tại A ( A ^ < 90 ° ) . Kẻ BH vuông góc với AC, CK vuông góc với AB ( H ∈ A C , K ∈ A B ) .
a) Chứng minh AH = AK
b) Gọi I là giao điểm của BH và CK. Chúng minh AI là tia phân giác của góc A.
Cho tam giác ABC cân tại A(góc A <90 độ).Vẽ BH vuông góc với AC tại H, CK vuông góc với AB tại K.
a) Chứng minh rằng: AH=AK.
b) Gọi I là giao điểm của BH và CK.Chứng mnh rằng AI là tia phân giác của góc A.
c) Cho biết AB =10cm, AK=6cm.Tính CK,BC
CHO TAM GIÁC NHỌN ABC CÂN TẠI A VẼ BH VUÔNG GÓC VỚI AC (H Thuộc AC) CK vuông góc với AB ( K thuộc AB )
A/ Chứng minh rằng AH=AK
B/ Gọi I LÀ GIAO ĐIỂM CỦA BH VÀ CK. Chứng minh tam giác BIC cân
C/Chứng minh rằng AI là phân giác của góc A
Cho tam giác ABC cân tại A . Vẽ BH vuông góc AC ( H ∈ AC ) , CK vuông góc AB ( K ∈ AB )
a ) CM rằng AH = AK
b) Gọi I là giao điểm BH và CK . CM góc KAI = HAI
c ) Đường thẳng AI cắt BC tại P . Chứng minh AI vuông góc BC tại P
a: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
\(\widehat{BAH}\) chung
Do đó: ΔAHB=ΔAKC
Suy ra: AH=AK
b: Xét ΔKAI vuông tại K và ΔHAI vuông tại H có
AI chung
AK=AH
Do đó: ΔKAI=ΔHAI
Suy ra: \(\widehat{KAI}=\widehat{HAI}\)
c: Ta có: ΔABC cân tại A
mà AI là đường phân giác
nên AI là đường cao
hay AI⊥BC tại P
a, Xét ΔΔtam giác vuông AKC và tam giác vuông AHB ta có :
AB=AC(do tam giácABC cân tại a)
góc A chung
=}tam giácAkc =tam giác AHB (ch_gn)
=}AH=AK(2 cạnh tương ứng)
b,Do AK=AH(cm câu a)=} I thuộc phân giác góc A
=}AI là phân giác góc A
cho tam giác ABC cân tại A ( Â<90 độ). kẻ BH vuông góc với AC ( H thuộc AC) , CK vuông góc AB (K thuộc AB)
a) chứng minh: tam giác ABH= tam giác ACK
b)chứng minh : AH=AK
c) gọi I là giao điểm BH và CK. chứng minh AI là tia phân giác góc BAC
a: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
góc BAH chung
Do đó: ΔAHB=ΔAKC
b: ΔAHB=ΔAKC
=>AH=AK
c: Xét ΔAKI vuông tại K và ΔAHI vuông tại H co
AI chung
AH=AK
Do đó: ΔAKI=ΔAHI
=>góc KAI=góc HAI
=>AI là phân giác của góc BAC
Tam giác ABC cân tại A(A<90°). Vẽ BH vuông góc với A (H thuộc AC), CK vuông góc AB (K thuộc AB)
a) Chứng minh rằng AH=AN
b) Gọi I là giao điểm của BH và CK. Chứng minh rằng tia AI là tia phân giác của góc A