\:A=\left(\frac{\sqrt{a}}{\sqrt{a}-1}-\frac{\sqrt{a}}{a-\sqrt{a}}\right)\div \frac{\sqrt{a}-1}{a-1}
Rút gọn biểu thức:
a) \(\left(\frac{\sqrt{a}+1}{\sqrt{ab}+1}+\frac{\sqrt{ab}+\sqrt{a}}{\sqrt{ab}-1}\right)\div\left(\frac{\sqrt{a}+1}{\sqrt{ab}+1}+\frac{\sqrt{ab+\sqrt{a}}}{\sqrt{ab}-1}+1\right)\)
b) \(1+\left(\frac{2a+\sqrt{a}-1}{1-a}-\frac{2a\sqrt{a}-\sqrt{a}+a}{1-a\sqrt{a}}\right)\left(\frac{a-\sqrt{a}}{2\sqrt{a}-1}\right)\)
Rút gọn biểu thức:
1) \(P=\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\frac{2x+\sqrt{x}}{\sqrt{x}}+\frac{2\cdot\left(x-1\right)}{\sqrt{x}-1}\)
2) \(P=\left(\frac{\sqrt{x}-2}{\sqrt{x}-1}-\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right)\cdot\frac{\left(1-x\right)^2}{2}\)
3) \(B=\left(\frac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\cdot\left(\frac{1+a\sqrt{a}}{1+\sqrt{a}}-\sqrt{a}\right)\)
4) \(K=\left(\frac{\sqrt{a}}{\sqrt{a}-1}-\frac{1}{a-\sqrt{a}}\right)\div\left(\frac{1}{\sqrt{a}+1}-\frac{2}{a-1}\right)\)
rút gọn:\(\left(1+\frac{\sqrt{a}}{a+1}\right)\div\left(\frac{1}{\sqrt{a}-1}-\frac{2\sqrt{a}}{a\sqrt{a}+\sqrt{a}-a-1}\right)\)
ĐKXĐ: \(\left\{{}\begin{matrix}a\ge0\\a\ne1\end{matrix}\right.\)
\(\left(1+\frac{\sqrt{a}}{a+1}\right):\left(\frac{1}{\sqrt{a}-1}-\frac{2\sqrt{a}}{a\sqrt{a}+\sqrt{a}-a-1}\right)\\ =\left(\frac{a+1+\sqrt{a}}{a+1}\right):\left(\frac{1}{\sqrt{a}-1}-\frac{2\sqrt{a}}{\left(a+1\right)\left(\sqrt{a}-1\right)}\right)\\ =\left(\frac{a+\sqrt{a}+1}{a+1}\right):\left(\frac{a+1-2\sqrt{a}}{\left(a+1\right)\left(\sqrt{a}-1\right)}\right)\\ =\frac{a+\sqrt{a}+1}{a+1}\cdot\frac{\left(a+1\right)\left(\sqrt{a}-1\right)}{\left(\sqrt{a}-1\right)^2}\\ =\frac{a+\sqrt{a}+1}{\sqrt{a}-1}\)
Rút gọn
\( A=\left(\frac{1}{\sqrt{a}-\sqrt{a-b}}+\frac{1}{\sqrt{a}+\sqrt{a+b}}\right)\div\left(1+\frac{\sqrt{a+b}}{\sqrt{a-b}}\right)\)
Ta có: a√a = √(a².a) = (√a)³
=> 1 - a√a = 1 - (√a)³ = (1 - √a)(a + √a + 1) (1)
Tương tự: 1 + a√a = 1 + (√a)³ = (1 + √a)(a - √a + 1) (2)
Từ (1) và (2) => [ (1-a√a/1-√a+√a).(1+a√a/1+√a-√a) + 1 ].
= [(1 - √a)(a + √a + 1)/(1 - √a) + √a].[(1 + √a)(a - √a + 1)/(1 + √a) - √a ] +1
=(a + √a + 1 + √a)(a - √a + 1- √a) + 1
= (a + 2√a + 1)(a - 2√a + 1) + 1
= (√a + 1)²(√a - 1)² +1
= [(√a + 1)(√a - 1)]² + 1
= (a - 1)² + 1
= a² - 2a + 1 + 1
= a² - 2a + 2
=> [ (1-a√a/1-√a+√a).(1+a√a/1+√a-√a) + 1 ] = a² - 2a + 2 (3)
Áp dụng (3) vào A ta được A = [(1 - a)²]/(a² - 2a + 2)
<=> A = (a² - 2a + 1)/(a² - 2a + 2)
rút gọn biểu thúc sau A= \(\left(\frac{2\sqrt{a}}{a\sqrt{a}+a+\sqrt{a}+1}+\frac{1}{\sqrt{a}+1}\right)\div\left(1+\frac{\sqrt{a}}{a+\text{1}}\right)\)
\(ĐKXĐ:a\ge0\)
\(A=\left(\frac{2\sqrt{a}}{a\sqrt{a}+a+\sqrt{a}+1}+\frac{1}{\sqrt{a}+1}\right):\left(1+\frac{\sqrt{a}}{a+1}\right)\)
\(\Leftrightarrow A=\left(\frac{2\sqrt{a}}{\left(a+1\right)\left(\sqrt{a}+1\right)}+\frac{1}{\sqrt{a}+1}\right):\frac{a+\sqrt{a}+1}{a+1}\)
\(\Leftrightarrow A=\frac{2\sqrt{a}+a+1}{\left(a+1\right)\left(\sqrt{a}+1\right)}\cdot\frac{a+1}{a+\sqrt{a}+1}\)
\(\Leftrightarrow A=\frac{\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)\left(a+\sqrt{a}+1\right)}\)
\(\Leftrightarrow A=\frac{\sqrt{a}+1}{a+\sqrt{a}+1}\)
Rút gọn: \(\left(\frac{a\sqrt{a}-3}{a-2\sqrt{a}-3}-\frac{2\left(\sqrt{a}-3\right)}{\sqrt{a}+1}+\frac{\sqrt{a}+3}{3-\sqrt{a}}\right)\div\frac{a+8}{a-1}\)
\(=\dfrac{a\sqrt{a}-3-2\left(a-6\sqrt{a}+9\right)-a-4\sqrt{a}-3}{\left(\sqrt{a}-3\right)\left(\sqrt{a}+1\right)}\cdot\dfrac{a-1}{a+8}\)
\(=\dfrac{a\sqrt{a}-a-4\sqrt{a}-6-2a+12\sqrt{a}-18}{\left(\sqrt{a}-3\right)}\cdot\dfrac{\sqrt{a}-1}{a+8}\)
\(=\dfrac{a\sqrt{a}-3a+8\sqrt{a}-24}{\left(\sqrt{a}-3\right)}\cdot\dfrac{\sqrt{a}-1}{a+8}=\sqrt{a}-1\)
\(A=\left(\frac{\sqrt{a}+1}{\sqrt{a}-1}+\frac{1-\sqrt{a}}{\sqrt{a}-1}\right)\div\left(\frac{\sqrt{a}+1}{\sqrt{a}-1}+\frac{\sqrt{a}}{\sqrt{a}+1}+\frac{\sqrt{a}}{1-a}\right)\)
a) Rút gọn A
b) Tính A khi a =\(1-\frac{\sqrt{3}}{2}\)
c) So sánh A với 2
Câu C : Lần đầu làm dạng này :))
Xét hiệu A - 2 , ta có :
\(A-2=\frac{2\sqrt{a}+2-4a-2}{2a+1}=\frac{2\sqrt{a}-4a}{2a+1}=\frac{2\sqrt{a}\left(1-2\sqrt{a}\right)}{2a+1}\)
Ta thấy :
+) Do \(a\ge0\)\(\Rightarrow2\sqrt{a}\left(1-2\sqrt{a}\right)\le0\)
+) a khác 1 ; \(a\ge0\)=> 2a + 1 > 0
\(\Rightarrow\frac{2\sqrt{a}\left(1-2\sqrt{a}\right)}{2a+1}\le0\)
\(\Leftrightarrow A< 2\)
P/s : sai bỏ qua :))
\(A=\left(\frac{\sqrt{a}+1}{\sqrt{a}-1}+\frac{1-\sqrt{a}}{\sqrt{a}-1}\right)\div\left(\frac{\sqrt{a}+1}{\sqrt{a}-1}+\frac{\sqrt{a}}{\sqrt{a}+1}+\frac{\sqrt{a}}{1-a}\right)\)
ĐKXĐ : \(\hept{\begin{cases}a\ge0\\a\ne1\end{cases}}\)
\(A=\left(\frac{\sqrt{a}+1+1-\sqrt{a}}{\sqrt{a}-1}\right)\div\left(\frac{\sqrt{a}+1}{\sqrt{a}-1}+\frac{\sqrt{a}}{\sqrt{a}+1}-\frac{\sqrt{a}}{a-1}\right)\)
\(A=\frac{2}{\sqrt{a}-1}\div\left(\frac{\sqrt{a}+1}{\sqrt{a}-1}+\frac{\sqrt{a}}{\sqrt{a}+1}-\frac{\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\)
\(A=\frac{2}{\sqrt{a}-1}\div\left(\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}+\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}-\frac{\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\)
\(A=\frac{2}{\sqrt{a}-1}\div\left(\frac{a+2\sqrt{a}+1+a-\sqrt{a}-\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\)
\(A=\frac{2}{\sqrt{a}-1}\div\frac{2a+1}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\)
\(A=\frac{2}{\sqrt{a}-1}\cdot\frac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{2a+1}\)
\(A=\frac{2\left(\sqrt{a}+1\right)}{2a+1}\)
b) \(a=1-\frac{\sqrt{3}}{2}=\frac{2}{2}-\frac{\sqrt{3}}{2}=\frac{2-\sqrt{3}}{2}\)( tmđk )
Rồi từ đây thế vô :)
c) Nhờ cao nhân làm tiếp chứ em mới lớp 8 thôi ạ :(
Rút gọn biểu thức:
\(P=\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\frac{2x+\sqrt{x}}{\sqrt{x}}+\frac{2\cdot\left(x-1\right)}{\sqrt{x}-1}\)
\(B=\left(\frac{\sqrt{a}}{\sqrt{a}-1}-\frac{1}{a-\sqrt{a}}\right)\div\left(\frac{1}{\sqrt{a}+1}-\frac{2}{a-1}\right)\)
ĐKXĐ: Bạn tự làm nha
\(P=\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\frac{2x+\sqrt{x}}{\sqrt{x}}+\frac{2\left(x-1\right)}{\sqrt{x}-1}\)
\(=\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\frac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\frac{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}\)
\(=\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\left(2\sqrt{x}+1\right)+2\left(\sqrt{x}+1\right)\)
\(=\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-2\sqrt{x}-1+2\sqrt{x}+2\)
\(=\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}+1\)
\(=\frac{x^2-\sqrt{x}+x+\sqrt{x}+1}{x+\sqrt{x}+1}\)
\(=\frac{x^2+x+1}{x+\sqrt{x}+1}\)
\(B=\left(\frac{\sqrt{a}}{\sqrt{a}-1}-\frac{1}{a-\sqrt{a}}\right):\left(\frac{1}{\sqrt{a}+1}-\frac{2}{a-1}\right)\)
\(=\left(\frac{\sqrt{a}}{\sqrt{a}-1}-\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\left(\frac{1}{\sqrt{a}+1}-\frac{2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right)\)
\(=\frac{a-1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\frac{1\left(\sqrt{a}-1\right)-2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\)
\(=\frac{\left(\sqrt{a}+1\right)}{\sqrt{a}}.\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\sqrt{a}-1-2}\)
\(=\frac{\left(\sqrt{a}+1\right)\left(a-1\right)}{\sqrt{a}\left(\sqrt{a}-3\right)}\)
\(\left(\frac{1}{2}\sqrt[3]{20+14\sqrt{2}}\times\sqrt{6-4\sqrt{4}}+\frac{1}{2}\sqrt[3]{\left(a+3\right)\sqrt{a}-3a-1}\right)\div\left(\frac{a-1}{2\left(\sqrt{a}+1\right)}+1\right)\)