Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
đức minh trần
Xem chi tiết
Nguyễn Thảo Nhi
Xem chi tiết
vu van dung
21 tháng 7 2016 lúc 8:14

khó thế

Nguyễn Thảo Nhi
22 tháng 7 2016 lúc 11:24

bài này mà ko biết mần

le bao son
Xem chi tiết
ST
15 tháng 6 2018 lúc 8:57

Sửa đề: cm A<0

\(A=\left(a^2-b^2+c^2\right)^2-4a^2c^2\)

\(=\left(a^2-b^2+c^2\right)^2-\left(2ac\right)^2\)

\(=\left(a^2-b^2+c^2+2ac\right)\left(a^2-b^2+c^2-2ac\right)\)

\(=\left[\left(a+c\right)^2-b^2\right]\left[\left(a-c\right)^2-b^2\right]\)

\(=\left(a+c-b\right)\left(a+c+b\right)\left(a-c-b\right)\left(a-c+b\right)\)

Vì a,b,c là độ dài 3 cạnh của 1 tam giác nên: a+b+c > 0

a+c>b => a+c-b > 0

c+b>a=>a-(c+b)=a-c-b < 0

a+b>c => a+b-c > 0

Do đó: (a+c-b)(a+b+c)(a-c-b)(a-c+b) < 0 hay A<0 (đpcm)

Nguyễn Phương Quỳnh Chi
Xem chi tiết
Song tử
Xem chi tiết
Hoang Tran
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 7 2021 lúc 21:31

Đặt \(P=\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\)

Ta có:

\(a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\Rightarrow\sqrt{a^2+b^2}\ge\dfrac{\sqrt{2}}{2}\left(a+b\right)\)

Tương tự và cộng lại ta được BĐT bên trái

Dấu "=" xảy ra khi \(a=b=c\)

Bên phải:

Áp dụng BĐT Bunhiacopxki:

\(P^2\le3\left(a^2+b^2+b^2+c^2+c^2+a^2\right)=6\left(a^2+b^2+c^2\right)\)

Mặt khác do a;b;c là 3 cạnh của 1 tam giác:

\(\Rightarrow\left\{{}\begin{matrix}a+b>c\\a+c>b\\b+c>a\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}ac+bc>c^2\\ab+bc>b^2\\ab+ac>c^2\end{matrix}\right.\)

\(\Rightarrow a^2+b^2+c^2< 2\left(ab+bc+ca\right)\)

\(\Rightarrow3\left(a^2+b^2+c^2\right)< 6\left(ab+bc+ca\right)\)

\(\Rightarrow P^2\le3\left(a^2+b^2+c^2\right)+3\left(a^2+b^2+c^2\right)< 3\left(a^2+b^2+c^2\right)+6\left(ab+bc+ca\right)\)

\(\Rightarrow P^2< 3\left(a+b+c\right)^2\Rightarrow P< \sqrt{3}\left(a+b+c\right)\)

Doãn Thị Thu Trang
Xem chi tiết
nguyễn thanh huyền
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 5 2021 lúc 21:58

Do a;b;c là 3 cạnh của 1 tam giác nên: \(\left\{{}\begin{matrix}a+b-c>0\\a+c-b>0\\b+c-a>0\end{matrix}\right.\)

BĐT đã cho tương đương:

\(\dfrac{a^2+2bc}{b^2+c^2}-1+\dfrac{b^2+2ac}{a^2+c^2}-1+\dfrac{c^2+2ab}{a^2+b^2}-1>0\)

\(\Leftrightarrow\dfrac{a^2-\left(b^2-2bc+c^2\right)}{b^2+c^2}+\dfrac{b^2-\left(a^2-2ac+c^2\right)}{a^2+c^2}+\dfrac{c^2-\left(a^2-2ab+b^2\right)}{a^2+b^2}>0\)

\(\Leftrightarrow\dfrac{a^2-\left(b-c\right)^2}{b^2+c^2}+\dfrac{b^2-\left(a-c\right)^2}{a^2+c^2}+\dfrac{c^2-\left(a-b\right)^2}{a^2+b^2}>0\)

\(\Leftrightarrow\dfrac{\left(a+c-b\right)\left(a+b-c\right)}{b^2+c^2}+\dfrac{\left(a+b-c\right)\left(b+c-a\right)}{a^2+c^2}+\dfrac{\left(b+c-a\right)\left(a+c-b\right)}{a^2+b^2}>0\) (luôn đúng)

Vậy BĐT đã cho đúng

online online
Xem chi tiết
Hoàng Lê Bảo Ngọc
2 tháng 9 2016 lúc 2:44

Vì a,b,c là ba cạnh của tam giác nên \(\begin{cases}a+b>c\\b+c>a\\a+c>b\end{cases}\) \(\Rightarrow\begin{cases}a+b-c>0\\b+c-a>0\\c+a-b>0\end{cases}\)

do đó các số \(\frac{a^2}{b+c-a},\frac{b^2}{a+c-b},\frac{c^2}{a+b-c}\) là các số dương.

Áp dụng bđt  \(\frac{x^2}{m}+\frac{y^2}{n}+\frac{z^2}{p}\ge\frac{\left(x+y+z\right)^2}{m+n+p}\) được

\(\frac{a^2}{b+c-a}+\frac{b^2}{a+c-b}+\frac{c^2}{a+b-c}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)-\left(a+b+c\right)}=\frac{\left(a+b+c\right)^2}{a+b+c}=a+b+c\)