S=1/4+1/16+1/36+1/64+..............+1/567 CTR S<1/2
cho S=1/16 + 1/36 + 1/64 + ..... + 1/(2n)^2 . hãy chứng tỏ rằng S nhỏ hơn 1/4
S = 1/4 + 1/9 + 1/16 + 1/25 + 1/36 + 1/49 + 1/64 + 1/81
CMR: 2/2 < S < 8/9
S=1/4+1/9+1/16+1/25+1/36+1/49+1/64+1/81=1-1/81=1/81
vô lí vì 2/2 = 1 mà 8/9 < 1
cho S=1/16+1/36+1/64+...+1/(2n)2 CMR:S<1/4
Chứng minh S=1/1+1/16+1/36+1/64+1/100+1/144+1/196<1/2
hình như phân số cuối phải là 1/324
nếu là 1/324 thì tớ giải nè:
S= 1/4+1/16+1/36+1/64+1/100+1/144+1/196+1/256+1/324
= 1/4.(1+1/2^2+1/3^2+1/4^2+1/5^2+1/6^2+1/7^2+1/8^2+1/9^2) <1/4.(1+1/1.2+1/2.3+1/3.4+1/4.5+1/5.6+1/6.7+1/7.8+1/8.9)
= 1/4.(1+1-1/9)
= 1/4.17/9 = 17/36<18/36 = 1/2
=> S= 1/4+1/16+1/36+1/64+1/100+1/144+1/196+1/256+1/324<1/2
Cho S=1+2+4+8+16+32+64+.............
Ở đây,S rõ ràng là số dương
S-1=2+4+8+16+32+64+...........
2S=2+4+8+16+32+64+.........
suy ra 2S=S-1
S=-1
Vậy lỗi sai nằm ở đâu ?
Gợi ý: hãy tìm hiểu khái niệm của chuỗi hội tụ
S là số vô hạn thì điều đó đúng. Còn S không phải là số vô hạn thì điều đó sai.
2s = 2+4 +.......128 +..... chứ k phai 64, bạn khôn quá he
nên 2s khác s-1 nghe bạn , k lừa dc tui đâu
Đề thiếu số hạng cuối cùng của biểu thức có thể coi lại bổ sung thêm
cách giải là S = 2S - ( S - 1) +1
(Số cuối của 2S) - (Số cuối của S - 1) +1
rút gọn p/s sau:
(3/4 - 3/16 - 3/64 - 3/256) / (1 - 1/4 - 1/16 - 1/64)
Cho S= \(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+\frac{1}{25}+\frac{1}{36}+\frac{1}{49}+\frac{1}{64}+\frac{1}{81}\)
Chứng minh rằng S < \(\frac{1}{2}\)
Giúp mình, mk cần gấp. Bạn nào nhanh mình tick cho
S=1/2+1/4+1/8+1/16+1/32+1/64+1/128+1/256
hỏi S bằng bao nhiêu ?
1/2 + 1/4+ 1/8+ 1/16 + 1/32 + 1/64 + 1/128 + 1/256 + 1/512
= 1 – 1/2 + 1/2- 1/4 + 1/4 – 1/8 + 1/8 – 1/16 + 1/16 – 1/32 + 1/32 – 1/64 + 1/64 – 1/128 + 1/128 – 1/256 – 1/256 – 1/512
= 1 – 1/512
= 511/512
S=1/4+1/8+1/16+1/32+1/64+1/128
S=1/4+1/8+1/16+1/32+1/64+1/128
\(S=\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^7}\)
\(2S=2\left(\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^7}\right)\)
\(2S=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^6}\)
\(2S-S=\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^6}\right)-\left(\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^7}\right)\)
\(S=\frac{1}{2}-\frac{1}{2^7}\)
S=(1/2-1/4)+(1/4-1/8)+(1/8-1/16)+(1/16-1/32)+(1/32-1/64)+(1/64-1/128)
S=1/2-1/4+1/4-1/8+1/8-1/16+1/16-1/32+1/32-1/64+1/64-1/128
S=1/2-(1/4-1/4)+(1/8-1/8)+(1/16-1/16)+(1/32-1/32)+(1/64-1/64)-1/128
S=1/2-1/128
S=63/128