Tìm số hữu tỉ a, b thoả mãn đẳng thức: \(\sqrt{3a\sqrt{3}}-\sqrt{b\sqrt{3}}=\sqrt{2\sqrt{3}-3}\)
tìm các số hữu tỉ x,y thỏa mãn đẳng thức:
\(\sqrt{2\sqrt{3}-3}=\sqrt{x\sqrt{3}}-\sqrt{y\sqrt{3}}\)
Tìm các số hữu tỉ thoả mãn: \(\sqrt{2\sqrt{3}-3}=\sqrt{3x\sqrt{3}}-\sqrt{y\sqrt{3}}\)
Tìm các số hữu tỉ x,y thoả mãn
\(\sqrt{2\sqrt{2}-3}=\sqrt{3x\sqrt{3}}-\sqrt{y\sqrt{3}}\)
\(\sqrt{2\sqrt{3}-3}=\sqrt{3x\sqrt{3}}-\sqrt{y\sqrt{3}}\)
\(\Leftrightarrow\sqrt{2-\sqrt{3}}=\sqrt{3x}-\sqrt{y}\Leftrightarrow2-\sqrt{3}=3x+y-2\sqrt{3xy}\)
\(\Leftrightarrow3x+y-2=2\sqrt{3xy}-\sqrt{3}\)(1)
Để phương trình đầu có nghiệm hữu tỉ=> phương trình (1) có nghiệm hữu tỉ x,y
\(\Rightarrow\hept{\begin{cases}2\sqrt{3xy}-\sqrt{3}=0\\3x+y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}2\sqrt{xy}-1=0\\3x+y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}xy=\frac{1}{4}\\y=2+3x\end{cases}}\Leftrightarrow\hept{\begin{cases}x\left(2-3x\right)=\frac{1}{4}\\y=2-3x\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}12x^2-8x+1=0\\y=2-3x\end{cases}}\)
phân tích thành nhân tử r làm tiếp nhé
Tìm các số hữu tỉ a,b biết:
\(\sqrt{3a\sqrt{3}}-\sqrt{b\sqrt{3}}=\sqrt{2\sqrt{3}-3}\)
Tìm số hữu tỉ a,b thỏa mãn 3/a+b$\sqrt{3}$ - 2/a-b$\sqrt{3}$ = 7-20$\sqrt{3}$
Tìm các số hữu tỉ x, y thoả mãn đẳng thức: \(x\left(\sqrt{2019}+\sqrt{2018}\right)+y\left(\sqrt{2019}-\sqrt{2018}\right)=\sqrt{2019^3}+\sqrt{2018^3}\)
\(x\left(\sqrt{2019}+\sqrt{2018}\right)+y\left(\sqrt{2019}-\sqrt{2018}\right)=2019\sqrt{2019}+2018\sqrt{2018}\)
\(\Leftrightarrow x\left(\sqrt{2019}+\sqrt{2018}\right)+y\left(\sqrt{2019}-\sqrt{2018}\right)=2018\left(\sqrt{2019}+\sqrt{2018}\right)+\sqrt{2019}\)
\(\Leftrightarrow x+y.\left(\sqrt{2019}-\sqrt{2018}\right)^2=2018+\sqrt{2019}\left(\sqrt{2019}-\sqrt{2018}\right)\)
\(\Leftrightarrow x+y\left(4037-2\sqrt{2019.2018}\right)=4037-\sqrt{2019.2018}\)
\(\Leftrightarrow x+4037.y-4037=2y\sqrt{2019.2018}-\sqrt{2019.2018}\)
\(\Leftrightarrow x+4037y-4037=\left(2y-1\right).\sqrt{2019.2018}\)(1)
Do \(x;y\) hữu tỉ \(\Rightarrow x+4037y-4037\) và \(2y-1\) đều là số hữu tỉ
Mà \(\sqrt{2019.2018}\) là số vô tỉ
\(\Rightarrow\)đẳng thức (1) xảy ra khi và chỉ khi: \(\left\{{}\begin{matrix}2y-1=0\\x+4037y-4037=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}y=\dfrac{1}{2}\\x=\dfrac{4037}{2}\end{matrix}\right.\)
Tìm 2 số hữu tỉ x , y thỏa mãn đẳng thức \(\sqrt{x\sqrt{3}}-\sqrt{y\sqrt{3}}=\sqrt{2\sqrt{3}-3}\)
tìm số hữu tỉ a,b thỏa mãn \(\frac{3}{a+b\sqrt{3}}-\frac{2}{a-b\sqrt{3}=7-20\sqrt{3}}\)có giá trị nguyên
sr nha này : \(\frac{3}{a+\sqrt{3}}-\frac{2}{a-b\sqrt{3}}=7-20\sqrt{3}\)tìm a,b hữu tỉ
Tìm số hữu tỉ x , y thỏa mãn \(\sqrt{2\sqrt{3}-3}=\sqrt{3x\sqrt{3}}-\sqrt{y\sqrt{3}}\)
mk mới lớp 6
hổng bt làm đâu