tìm các số nguyên x,y sao cho:3x3 +xy=3
tìm các số nguyên x và y sao cho:(x-3).(2y+1)=7
tìm các số nguyên x và y sao cho: xy+3x-2y=11
giúp mình với nhanh mình tick
a )
(x-3).(2y+1)=7
(x-3).(2y+1)= 1.7 = (-1).(-7)
Cứ cho x - 3 = 1 => x= 4
2y + 1 = 7 => y = 3
Tiếp x - 3 = 7 => x = 10
2y + 1 = 1 => y = 0
x-3 = -1 ...
1.tìm các số nguyên x và y sao cho:
(x-3).(2y+1)=7
Vì x;y là số nguyên =>x-3 ; 2y+1 là số nguyên
=>x-3 ; 2y+1 C Ư(7)
ta có bảng:
x-3 | 1 | 7 | -1 | -7 |
2y+1 | 7 | 1 | -7 | -1 |
x | 4 | 10 | 2 | -4 |
y | 3 | 0 | -4 | -1 |
Vậy..............................................................................
2.tìm các số nguyên x và y sao cho:
xy+3x-2y=11
x.(y+3)-2y=11
x.(y+3)-y=11
x.(y+3)-(y+3)=11
(x-1)(y+3)=11
Vì x;y là số nguyên => x-1;y+3 là số nguyên
=> x-1;y+3 Thuộc Ư(11)
Ta có bảng:
x-1 | 1 | 11 | -1 | -11 |
y+3 | 11 | 1 | -11 | -1 |
x | 2 | 12 | 0 | -10 |
y | 8 | -2 | -14 | -4 |
Vậy.......................................................................................
\(a,\left(x-3\right).\left(2y+1\right)=7\)
\(Do:x;y\inℤ=>\hept{\begin{cases}x-3\\2y+1\end{cases}\in}ℤ\)
\(=>x-3;2y+1\inƯ\left(7\right)\)
Nên ta có bảng sau :
x-3 | -1 | -7 | 1 | 7 |
2y+1 | -7 | -1 | 7 | 1 |
x | 2 | -4 | 4 | 10 |
y | -4 | -1 | 3 | 0 |
Vậy...
tìm các số nguyên x y sao cho 3x^3+xy=3
Tìm tất cả các cặp số nguyên dương x,y sao cho (x^3+x)/(xy-1) là một số nguyên dương ?
Giả sử (x;y) là cặp số nguyên dương cần tìm. Khi đó ta có:
(xy-1) I (x^3+x) => (xy-1) I x.(x^2+1) (1)
Do (x; xy-1) =1 ( Thật vậy: gọi (x;xy-1) =d => d I x => d I xy => d I 1).
Nên từ (1) ta có:
(xy-1) I (x^2+1)
=> (xy-1) I (x^2+1+xy -1) => (xy-1) I (x^2+xy) => (xy-1) I x.(x+y) => (xy-1) I (x+y)
Điều đó có nghĩa là tồn tại z ∈ N* sao cho:
x+y = z(xy-1) <=> x+y+z =xyz (2)
[Đây lại có vẻ là 1 bài toán khác]
Do vai trò bình đẳng nên ta giả sử: x ≥ y ≥ z.
Từ (2) ta có: x+y+z ≤ 3x => 3x ≥ xyz => 3 ≥ yz ≥ z^2 => z=1
=> 3 ≥ y => y ∈ {1;2;3}
Nếu y=1: x+2 =x (loại)
Nếu y=2: (2) trở thành x+3 =2x => x=3
Nếu y=3: x+4 = 3x => x=2 (loại vì ta có x≥y)
Vậy khi x ≥ y ≥ z thì (2) có 1 nghiệm (x;y;z) là (3;2;1)
Hoán vị vòng quanh được 6 nghiệm là: .....[bạn tự viết nhé]
Vậy bài toán đã cho có 6 nghiệm (x;y) là : .... [viết y chang nhưng bỏ z đi]
Giả sử (x;y) là cặp số nguyên dương cần tìm. Khi đó ta có:
(xy-1) I (x^3+x) => (xy-1) I x.(x^2+1) (1)
Do (x; xy-1) =1 ( Thật vậy: gọi (x;xy-1) =d => d I x => d I xy => d I 1).
Nên từ (1) ta có:
(xy-1) I (x^2+1)
=> (xy-1) I (x^2+1+xy -1) => (xy-1) I (x^2+xy) => (xy-1) I x.(x+y) => (xy-1) I (x+y)
Điều đó có nghĩa là tồn tại z ∈ N* sao cho:
x+y = z(xy-1) <=> x+y+z =xyz (2)
[Đây lại có vẻ là 1 bài toán khác]
Do vai trò bình đẳng nên ta giả sử: x ≥ y ≥ z.
Từ (2) ta có: x+y+z ≤ 3x => 3x ≥ xyz => 3 ≥ yz ≥ z^2 => z=1
=> 3 ≥ y => y ∈ {1;2;3}
Nếu y=1: x+2 =x (loại)
Nếu y=2: (2) trở thành x+3 =2x => x=3
Nếu y=3: x+4 = 3x => x=2 (loại vì ta có x≥y)
Vậy khi x ≥ y ≥ z thì (2) có 1 nghiệm (x;y;z) là (3;2;1)
Hoán vị vòng quanh được 6 nghiệm là: .....[bạn tự viết nhé]
Vậy bài toán đã cho có 6 nghiệm (x;y) là : .... [viết y chang nhưng bỏ z đi]
Xét x= 1 => \(\dfrac{2}{y-1}\in\mathbb N\), từ đó có \(y=2\vee y=3\)
Xét y=1 => \(\dfrac{x^3+x}{x-1}=x^2+x+2+\dfrac{2}{x-1}\in\mathbb N\), từ đó có \(x=2\vee x=3\)
Xét \(x\ge 2\) hoặc \(y\ge 2\) . Ta có : \((x,xy-1)=1\). Do đó :
\(xy-1|x^3+x\Rightarrow xy-1|x^2+1\Rightarrow xy-1|x+y\)
=> \(x+y\ge xy-1\Rightarrow (x-1)(y-1)\le 2\). Từ đó có \((x-1)(y-1)=1\ \vee (x-1)(y-1)=2\)
=> x = y = 2 ( loại ) hoặc x = 2 ; y = 3 hoặc x = 3 ; y= 2
Vậy các cặp số ( x;y ) thỏa mãn là (1;2),(2;1),(1;3),(3;1),(2;3),(3;2)
tìm các số nguyên x,y sao cho : 3x3+xy=3
\(\Leftrightarrow xy+3x^2=3\)
\(\Rightarrow xy+3x^3-3=0\)
=>x=0
Thay x=0 vào biểu thức 3x3+xy=3, ta có :
\(\Rightarrow3.0^3+0.y=3\)
=>y \(\in\left\{\infty;-\infty\right\}\)
vậy x,y có thể \(\in\left\{\infty;-\infty;0\right\}\)
1 Tìm các số nguyên n để (4n+3):(n-2)
2 Tìm các số nguyên x,y sao cho xy+5 x+y+10=0
3 Tìm số nguyên n để (2n^2 +n-3):(n+1)
I don't now
mik ko biết
sorry
......................
1)\(4n+3⋮n-2\)
\(\Leftrightarrow4n+3=4\left(n-2\right)+11\)
\(\Rightarrow4\left(n-2\right)⋮n-2\)\(\Rightarrow n-2⋮n-2\)
\(\Rightarrow11⋮n-2\)
\(\Rightarrow n-2\in\left\{\pm1;\pm11\right\}\)
\(\Rightarrow n\in\left\{3;1;13;-9\right\}\)
2)\(xy+5x+y+10=0\)
\(\Leftrightarrow x\left(y+5\right)+y+5+5=0\)
\(\Leftrightarrow x\left(y+5\right)+\left(y+5\right)=-5\)
\(\Leftrightarrow\left(x+1\right).\left(y+5\right)=-5\)
x+1 | -1 | -5 | 1 | 5 |
y+5 | 5 | 1 | -5 | -1 |
x | -2 | -6 | 0 | 4 |
y | 0 | -4 | -10 | -6 |
3)
Tìm các số nguyên x,y sao cho:
(x+1).(xy+1)=3
Tìm các số nguyên x, y sao cho:
(x+1) (xy-1)=3
(x+1)(xy-1)=3
=> x+1 ; xy-1 thuộc Ư(3)={-1,-3,1,3}
Ta có bảng :
x+1 | -1 | -3 | 1 | 3 |
x | -2 | -4 | 0 | 2 |
xy-1 | -3 | -1 | 3 | 1 |
y | 1 | 0 | ko thõa mãn | 1 |
Vậy ta có các cặp x,y thõa mãn là : (-2,1);(-4,0);(2,1)
a,(x+1)(xy-1)=3
có 3=1.3=3.1=-1.-3=-3.-1
x+1 1 3 -3 -1
x 0 2 -4 -2
xy-1 3 1 -1 -3
y Φ 1 0 1
vậy x;y là (2;1),(-4;0),(-2;1)
Tìm các số nguyên dương x và y sao cho 1/x+1/y+1/xy=2/3
Tìm các số nguyên x, y sao cho: xy - x + y = 6
`xy - x + y = 6`.
`<=> x(y-1) + (y-1) = 5`.
`<=> (x+1)(y-1) = 5`.
`<=> x + 1 in Ư(5)`.
`+, {(x+1=1), (y-1 =5):}`
`<=> {(x=0), (y=6):}`
`+, {(x+1=-1), (y-1=-5):}`
`<=> {(x=-2), (y=-4):}`
`+, {(x+1=-5), (y-1=-1):}`
`<=> {(x=-6), (y=0):}`
`+, {(x+1=5), (y-1=1):}`
`<=> {(x=4), (y=2):}`
tìm các số nguyên x,y sao cho
a) ( x+3) ( y+1 ) = 3
b) ( x-1 ) ( xy+1)=2
c) xy - 2x=5